1-2hit |
Sangwon SEO Sangbae YUN Jaehong KIM Inkyo KIM Seongwook JIN Seungryoul MAENG
An increasing number of IoT devices are being introduced to the market in many industries, and the number of devices is expected to exceed billions in the near future. With this trend, many researchers have proposed new architectures to manage IoT devices, but the proposed architecture requires a huge memory footprint and computation overheads to look-up billions of devices. This paper proposes a hybrid hashing architecture called H- TLA to solve the problem from an architectural point of view, instead of modifying a hashing algorithm or designing a new one. We implemented a prototype system that shows about a 30% increase in performance while conserving uniformity. Therefore, we show an efficient architecture-level approach for addressing billions of devices.
Jinho SEOL Seongwook JIN Seungryoul MAENG
Even though cloud users want to keep their data on clouds secure, it is not easy to protect the data because cloud administrators could be malicious and hypervisor could be compromised. To solve this problem, hardware-based memory isolation schemes have been proposed. However, the data in virtual storage are not protected by the memory isolation schemes, and thus, a guest OS should encrypt the data. In this paper, we address the problems of the previous schemes and propose a hardware-based storage isolation scheme. The proposed scheme enables to protect user data securely and to achieve performance improvement.