1-1hit |
This letter considers a sum-rate maximization problem with user scheduling wherein each user has a minimum-rate requirement in multiple-input-multiple-output broadcast channel. The multiuser strategy used in the user scheduling is a joint transceiver scheme with block diagonal geometric mean decomposition. Since optimum solution to the user scheduling problem generally requires exhaustive search, we propose a suboptimum user scheduling algorithm with each user's minimum-rate requirement as the main constraint. In order to satisfy maximum sum-rate and minimum-rate constraints simultaneously, we additionally consider power allocation for scheduled users. Simulation results show that the proposed user scheduling algorithm, together with the user power allocation, achieves sum-rate close to the exhaustive search, while also guarantees minimum-rate requirement of each user.