1-1hit |
Yuki HASEGAWA Shigehiro ASADA Teruaki KATSUBE Tohru IKEGUCHI
Some plants have air purification ability. This purification ability of plants is considered a promising method for indoor air purification because of the low cost and high purification performance. Therefore, several studies have been carried out to investigate the relationship between the air purification ability of plants and environmental conditions. Nevertheless, the purification mechanism and process have not been clarified yet. In this paper, we investigated the air purification process in plants by bioelectrical potential analysis using linear and nonlinear analysis methods. First, we showed that two types of plants have a high air purification ability; Schefflera and Boston fern. Next, we measured AC bioelectrical potential during the purifying process of plants for pollutant gas. Then, we evaluated the power spectra of time series data of the bioelectrical potential. We found that the power spectra shifted to a lower level after gas injection over all frequencies. Thus, the higher power spectrum came from possible higher physiological activities of the plant. Finally, we introduced a nonlinear analysis method from the dynamical system theory. We transformed the time series data of the potential to a higher dimensional state space using a delay coordinate, which is often used in the field of nonlinear time series analysis. The results show that the orbits in the reconstructed state space have a large variation in gas injection. These experimental results suggest that the measurement of bioelectrical potential could become a useful method for evaluating the air purification ability of plants.