1-1hit |
Jung-Shan LIN I-Cheng LIU Shih-Chun YANG Jeih-weih HUNG
This paper proposes an improved discrete Fourier transform (DFT)-based channel estimation technique for time domain synchronous orthogonal frequency division multiplexing (TDS-OFDM) communication systems. The proposed technique, based on the concept of significant channel tap detector (SCTD) scheme, can effectively improve the system performance of TDS-OFDM systems. The correlation of two successive preambles is employed to estimate the average noise power as the threshold for obtaining the SCTD threshold estimation error and loss path information in large delay spread channel environments. The proposed estimation scheme roughly predicts the noise power in order to choose the significant channel taps to estimate the channel impulse response. Some comparative simulations are given to show that the proposed technique has the potential to achieve bit error rate performance superior to that of the conventional least squares channel estimation.