The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Shihong ZHAI(1hit)

1-1hit
  • Computer Vision-Based Tracking of Workers in Construction Sites Based on MDNet

    Wen LIU  Yixiao SHAO  Shihong ZHAI  Zhao YANG  Peishuai CHEN  

     
    PAPER-Smart Industry

      Pubricized:
    2022/10/20
      Vol:
    E106-D No:5
      Page(s):
    653-661

    Automatic continuous tracking of objects involved in a construction project is required for such tasks as productivity assessment, unsafe behavior recognition, and progress monitoring. Many computer-vision-based tracking approaches have been investigated and successfully tested on construction sites; however, their practical applications are hindered by the tracking accuracy limited by the dynamic, complex nature of construction sites (i.e. clutter with background, occlusion, varying scale and pose). To achieve better tracking performance, a novel deep-learning-based tracking approach called the Multi-Domain Convolutional Neural Networks (MD-CNN) is proposed and investigated. The proposed approach consists of two key stages: 1) multi-domain representation of learning; and 2) online visual tracking. To evaluate the effectiveness and feasibility of this approach, it is applied to a metro project in Wuhan China, and the results demonstrate good tracking performance in construction scenarios with complex background. The average distance error and F-measure for the MDNet are 7.64 pixels and 67, respectively. The results demonstrate that the proposed approach can be used by site managers to monitor and track workers for hazard prevention in construction sites.