1-2hit |
Jinjun LUO Shilian WANG Eryang ZHANG
Spectrum sensing is a fundamental requirement for cognitive radio, and it is a challenging problem in impulsive noise modeled by symmetric alpha-stable (SαS) distributions. The Gaussian kernelized energy detector (GKED) performs better than the conventional detectors in SαS distributed noise. However, it fails to detect the DC signal and has high computational complexity. To solve these problems, this paper proposes a more efficient and robust detector based on a Gaussian function (GF). The analytical expressions of the detection and false alarm probabilities are derived and the best parameter for the statistic is calculated. Theoretical analysis and simulation results show that the proposed GF detector has much lower computational complexity than the GKED method, and it can successfully detect the DC signal. In addition, the GF detector performs better than the conventional counterparts including the GKED detector in SαS distributed noise with different characteristic exponents. Finally, we discuss the reason why the GF detector outperforms the conventional counterparts.
Junshan LUO Shilian WANG Qian CHENG
Joint transmit and receive antenna selection (JTRAS) for transceive spatial modulation (TRSM) is investigated in this paper. A couple of low-complexity and efficient JTRAS algorithms are proposed to improve the reliability of TRSM systems by maximizing the minimum Euclidean distance (ED) among all received signals. Specifically, the QR decomposition based ED-JTRAS achieves near-optimal error performance with a moderate complexity reduction as compared to the optimal ED-JTRAS method. The singular value decomposition based ED-JTRAS achieves sub-optimal error performance with a significant complexity reduction. Simulation results show that the proposed methods remarkably improve the system reliability in both uncorrelated and spatially correlated Rayleigh fading channels, as compared to the conventional norm based JTRAS method.