The search functionality is under construction.

Author Search Result

[Author] Shin-ichiro MORI(4hit)

1-4hit
  • ReVolver/C40: A Scalable Parallel Computer for Volume Rendering--Design and Implementation--

    Shin-ichiro MORI  Tomoaki TSUMURA  Masahiro GOSHIMA  Yasuhiko NAKASHIMA  Hiroshi NAKASHIMA  Shinji TOMITA  

     
    PAPER

      Vol:
    E86-D No:10
      Page(s):
    2006-2015

    This paper describes the architecture of ReVolver/C40 a scalable parallel machine for volume rendering and its prototype implementation. The most important feature of ReVolver/C40 is view-independent real time rendering of translucent 3D object by using perspective projection. In order to realize this feature, the authors propose a parallel volume memory architecture based on the principal axis oriented sampling method and parallel treble volume memory. This paper also discusses the implementation issues of ReVolver/C40 where various kinds of parallelism extracted to achieve high-perfromance rendering are explained. The prototype systems had been developed and their performance evaluation results are explained. As the results of the evaluation of the prototype systems, ReVolver/C40 with 32 parallel volume memory is estimated to achieve more than 10 frame per second for 2563 volume data on 2562 screen by using perspective projection. The authors also review the development of ReVolver/C40 from several view points.

  • Repeatable Hybrid Parallel Implementation of an Inverse Matrix Computation Using the SMW Formula for a Time-Series Simulation

    Yuta MATSUI  Shinji FUKUMA  Shin-ichiro MORI  

     
    LETTER-Software

      Pubricized:
    2015/09/15
      Vol:
    E98-D No:12
      Page(s):
    2196-2198

    In this paper, the repeatable hybrid parallel implementation of inverse matrix computation using SMW formula is proposed. The authors' had previously proposed a hybrid parallel algorithm for inverse matrix computation. It is reasonably fast for a one time computation of an inverse matrix, but it is hard to apply this algorithm repeatedly for consecutive computations since the relocation of the large matrix is required at the beginning of each iterations. In order to eliminate the relocation of the large input matrix which is the output of the inverse matrix computation from the previous time step, the computation algorithm has been redesigned so that the required portion of the input matrix becomes the same as the output portion of the previously computed matrix in each node. This makes it possible to repeatedly and efficiently apply the SMW formula to compute inverse matrix in a time-series simulation.

  • i-MSE: A Fine Structure Imaging for Surface and Its Inside of Solid Material with Micro Slurry-Jet Erosion Test

    Shinji FUKUMA  Yoshiro IWAI  Shin-ichiro MORI  

     
    PAPER-Image

      Pubricized:
    2023/05/22
      Vol:
    E106-A No:11
      Page(s):
    1376-1384

    We propose a fine structure imaging for the surface and its inside of solid material such as coated drill bits with TiN (Titanium Nitride). We call this method i-MSE (innovative MSE) since the fine structure is visualized with a local mechanical strength (the local erosion rate) which is obtained from a set of erosion depth profiles measured with Micro Slurry-jet Erosion test (MSE). The local erosion rate at any sampling point is estimated from the depth profile using a sliding window regression and for the rest of the 2-dimensional points it is interpolated with the mean value coordinate technique. The interpolated rate is converted to a 2D image (i-MSE image) with a color map. The i-MSE image can distinguish layers if the testing material surface is composed of coats which have different resistance to erosion (erosive wear), while microscopic image such as SEM (Scanning Electron Microscope) and a calotest just provides appearance information, not physical characteristics. Experiments for some layered specimens show that i-MSE can be an effective tool to visualize the structure and to evaluate the mechanical characteristics for the surface and the inside of solid material.

  • Hybrid Parallel Implementation of Inverse Matrix Computation by SMW Formula for Interactive Simulation

    Shotaro IWANAGA  Shinji FUKUMA  Shin-ichiro MORI  

     
    LETTER

      Vol:
    E95-D No:12
      Page(s):
    2952-2953

    In this paper, a hybrid parallel implementation of inverse matrix computation using SMW formula is proposed. By aggregating the memory bandwidth in the hybrid parallel implementation, the bottleneck due to the memory bandwidth limitation in the authors previous multicore implementation has been dissolved. More than 8 times of speed up is also achieved with dual-core 8-nodes implementation which leads more than 20 simulation steps per second, or near real-time performance.