The search functionality is under construction.

Author Search Result

[Author] Shinichi NAKANO(2hit)

1-2hit
  • Application of Petri Nets to Sequence Control

    Yoichi NAGAO  Hironobu URABE  Shinichi NAKANO  Sadatoshi KUMAGAI  

     
    PAPER

      Vol:
    E76-A No:10
      Page(s):
    1598-1606

    We describe K-NET, a support system for development of sequence control programs. The K-NET description model is based on the colored Petri net and timed Petri net. K-NET concisely expresses sequence control flow including synchronization, interlock and concurrence, and provides high-level data processing by being combined with a conventional procedural language. K-NET has an editor, simulator, generator, reporter and monitor to support the control program development procedure ranging from basic and detail design to programming and testing. We have added a new function to K-NET so it assists development of control programs for programmable controllers, and have applied it to an automatic bolt supplying system. The operation results are satisfactory.

  • A Relocation Planning Method for Railway Cars in Final Assembly Shop

    Yoichi NAGAO  Shinichi NAKANO  Akifumi HOSHINO  Yasushi KANETA  Toshiyuki KITA  Masakazu OKAMOTO  

     
    PAPER-Graphs and Networks

      Vol:
    E96-A No:2
      Page(s):
    554-561

    The authors propose a method to make a movement plan for relocation of the railway cars in preparation for the final assembly. It obtains solution through three steps. The first step is to extract the order constraints between the movements of the railway cars based on their locations before and after relocation. The second step is to introduce the movement which puts a railway car into another location temporarily, in order to avoid a deadlock in the movements. And the final step is to obtain the movement order for carrying out the relocation in the shortest time in accordance with the calculated order constraints by using the genetic algorithm (GA). The order constraints are resolved in advance and therefore the movement order can easily be decided by GA. As the result, the developed system takes time shorter than an expert for planning the relocation.