1-2hit |
Masahiro YAMAUCHI Shinji TANIMOTO Toshimasa WATANABE
A minimal siphon (or alternatively a structural deadlock) of a Petri net is defined as a minimal set S of places such that existence of any edge from a transition t to a place of S implies that there is an edge from some place of S to t. The subject of the paper is to find a minimal siphon containing a given set of specified places of a general Petri net.
Shinji TANIMOTO Masahiro YAMAUCHI Toshimasa WATANABE
A siphon (or alternatively a structutal deadlock) of a Petri net is defined as a set S of places such that existence of any edge from a transition t to a place of S implies that there is an edge from some place of S to t. A minimal siphon is a siphon such that any proper subset is not a siphon. The results of the paper are as follows. (1) The problem of deciding whether or not a given Petri net has a minimum siphon (i.e., a minimum-cardinality minimal siphon) is NP-complete. (2) A polynomial-time algorithm to find, if any, a minimal siphon or even a maximal calss of mutually disjoint minimal siphons of a general Petri net is proposed.