The search functionality is under construction.

Author Search Result

[Author] Shinpei KATO(2hit)

1-2hit
  • Cooperative GPGPU Scheduling for Consolidating Server Workloads

    Yusuke SUZUKI  Hiroshi YAMADA  Shinpei KATO  Kenji KONO  

     
    PAPER-Software System

      Pubricized:
    2018/08/30
      Vol:
    E101-D No:12
      Page(s):
    3019-3037

    Graphics processing units (GPUs) have become an attractive platform for general-purpose computing (GPGPU) in various domains. Making GPUs a time-multiplexing resource is a key to consolidating GPGPU applications (apps) in multi-tenant cloud platforms. However, advanced GPGPU apps pose a new challenge for consolidation. Such highly functional GPGPU apps, referred to as GPU eaters, can easily monopolize a shared GPU and starve collocated GPGPU apps. This paper presents GLoop, which is a software runtime that enables us to consolidate GPGPU apps including GPU eaters. GLoop offers an event-driven programming model, which allows GLoop-based apps to inherit the GPU eaters' high functionality while proportionally scheduling them on a shared GPU in an isolated manner. We implemented a prototype of GLoop and ported eight GPU eaters on it. The experimental results demonstrate that our prototype successfully schedules the consolidated GPGPU apps on the basis of its scheduling policy and isolates resources among them.

  • An Open Multi-Sensor Fusion Toolbox for Autonomous Vehicles

    Abraham MONRROY CANO  Eijiro TAKEUCHI  Shinpei KATO  Masato EDAHIRO  

     
    PAPER

      Vol:
    E103-A No:1
      Page(s):
    252-264

    We present an accurate and easy-to-use multi-sensor fusion toolbox for autonomous vehicles. It includes a ‘target-less’ multi-LiDAR (Light Detection and Ranging), and Camera-LiDAR calibration, sensor fusion, and a fast and accurate point cloud ground classifier. Our calibration methods do not require complex setup procedures, and once the sensors are calibrated, our framework eases the fusion of multiple point clouds, and cameras. In addition we present an original real-time ground-obstacle classifier, which runs on the CPU, and is designed to be used with any type and number of LiDARs. Evaluation results on the KITTI dataset confirm that our calibration method has comparable accuracy with other state-of-the-art contenders in the benchmark.