The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Shinya KUMAGAI(5hit)

1-5hit
  • Joint Tx/Rx MMSE Filtering for Single-Carrier MIMO Eigenmode Transmission Using Iterative Interference Cancellation

    Shinya KUMAGAI  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:1
      Page(s):
    192-201

    In this paper, we propose a new joint transmit and receive spatial/frequency-domain filtering for single-carrier (SC) multiple-input multiple-output (MIMO) eigenmode transmission using iterative interference cancellation (IC). Iterative IC is introduced to a previously proposed joint transmit and receive spatial/frequency-domain filtering based on minimum mean square error criterion (called joint Tx/Rx MMSE filtering) to reduce the residual inter-symbol interference (ISI) after the Rx filtering. The optimal Tx/Rx filters are derived based on the MMSE criterion taking into account the iterative IC. The superiority of our proposed technique is confirmed by computer simulation.

  • Single-Carrier Multi-User MIMO Downlink with Time-Domain Tomlinson-Harashima Precoding

    Shohei YOSHIOKA  Shinya KUMAGAI  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:2
      Page(s):
    471-480

    Nonlinear precoding improves the downlink bit error rate (BER) performance of multi-user multiple-input multiple-output (MU-MIMO). Broadband single-carrier (SC) block transmission can improve the capability that nonlinear precoding reduces BER, as it provides frequency diversity gain. This paper considers Tomlinson-Harashima precoding (THP) as a nonlinear precoding scheme for SC-MU-MIMO downlink. In the SC-MU-MIMO downlink with frequency-domain THP proposed by Degen and Rrühl (called SC-FDTHP), the inter-symbol interference (ISI) is suppressed by transmit frequency-domain equalization (FDE) after suppressing the inter-user interference (IUI) by frequency-domain THP. Transmit FDE increases the signal variance, hence transmission performance improvement is limited. In this paper, we propose a new SC-MU-MIMO downlink with time-domain THP which can pre-remove both ISI and IUI (called SC-TDTHP) if perfect channel state information (CSI) is available. Modulo operation in THP suppresses the signal variance increase caused by ISI and IUI pre-removal, and hence the transmission quality improves. For further performance improvement, vector perturbation is introduced to SC-TDTHP (called SC-TDTHP w/VP). Computer simulation shows that SC-TDTHP achieves better BER performance than SC-FDTHP and that SC-TDTHP w/VP offers further improvement in BER performance over SC-MU-MIMO with VP (called SC-VP). Computational complexity is also compared and it is showed that SC-TDTHP and SC-TDTHP w/VP incur higher computational complexity than SC-FDTHP but lower than SC-VP.

  • Analog Single-Carrier Transmission with Frequency-Domain Equalization

    Thanh Hai VO  Shinya KUMAGAI  Tatsunori OBARA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:9
      Page(s):
    1958-1966

    In this paper, a new analog signal transmission technique called analog single-carrier transmission with frequency-domain equalization (analog SC-FDE) is proposed. Analog SC-FDE applies discrete Fourier transform (DFT), frequency-domain spectrum shaping and mapping, inverse DFT (IDFT), and cyclic prefix (CP) insertion before transmission. At the receiver, one-tap FDE is applied to take advantage of frequency diversity. This paper considers, as an example, analog voice transmission. A theoretical analysis of the normalized mean square error (NMSE) performance is carried out to evaluate the transmission property of the proposed analog SC-FDE and is confirmed by computer simulation. We show that analog SC-FDE achieves better NMSE performance than conventional analog signal transmission scheme.

  • Cooperative Distributed Antenna Transmission for 5G Mobile Communications Network

    Fumiyuki ADACHI  Amnart BOONKAJAY  Yuta SEKI  Tomoyuki SAITO  Shinya KUMAGAI  Hiroyuki MIYAZAKI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/02/08
      Vol:
    E100-B No:8
      Page(s):
    1190-1204

    In this paper, the recent advances in cooperative distributed antenna transmission (CDAT) are introduced for spatial diversity and multi-user spatial multiplexing in 5G mobile communications network. CDAT is an advanced version of the coordinated multi-point (CoMP) transmission. Space-time block coded transmit diversity (STBC-TD) for spatial diversity and minimum mean square error filtering combined with singular value decomposition (MMSE-SVD) for multi-user spatial multiplexing are described under the presence of co-channel interference from adjacent macro-cells. Blind selected mapping (blind SLM) which requires no side information transmission is introduced in order to suppress the increased peak-to-average signal power ratio (PAPR) of the transmit signals when CDAT is applied. Some computer simulation results are presented to confirm the effectiveness of CDAT techniques.

  • Joint Tx/Rx MMSE Filtering for Single-Carrier MIMO Transmission

    Shinya KUMAGAI  Tatsunori OBARA  Tetsuya YAMAMOTO  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:9
      Page(s):
    1967-1976

    In this paper, we propose a joint transmit and receive linear filtering based on minimum mean square error criterion (joint Tx/Rx MMSE filtering) for single-carrier (SC) multiple-input multiple-output (MIMO) transmission. Joint Tx/Rx MMSE filtering transforms the MIMO channel to the orthogonal eigenmodes to avoid the inter-antenna interference (IAI) and performs MMSE based transmit power allocation to sufficiently suppress the inter-symbol interference (ISI) resulting from the severe frequency-selectivity of the channel. Rank adaptation and adaptive modulation are jointly introduced to narrow the gap of received signal-to-interference plus noise power ratio (SINR) among eigenmodes. The superiority of the SC-MIMO transmission with joint Tx/Rx MMSE filtering and joint rank adaptation/adaptive modulation is confirmed by computer simulation.