1-9hit |
Shinya MOCHIDUKI Yuki YOKOYAMA Keigo SUKEGAWA Hiroki SATO Miyuki SUGANUMA Mitsuho YAMADA
In this study, we first developed a simultaneous measurement system for accommodation and convergence eye movement and evaluated its precision. Then, using a stuffed animal as the target, whose depth should be relatively easy to perceive, we measured convergence eye movement and accommodation at the same time while a tablet displaying a 3D movie was moved in the depth direction. By adding the real 3D display depth movement to the movement of the 3D image, subjects showed convergence eye movement that corresponds appropriately to the dual change of parallax in the 3D movie and real display, even when a subject's convergence changed very little. Accommodation also changed appropriately according to the change in depth.
Yuki KUROSAWA Shinya MOCHIDUKI Yuko HOSHINO Mitsuho YAMADA
We measured eye movements at gaze points while subjects performed calculation tasks and examined the relationship between the eye movements and fatigue and/or internal state of a subject by tasks. It was suggested that fatigue and/or internal state of a subject affected eye movements at gaze points and that we could measure them using eye movements at gaze points in real time.
Tsuyoshi KUSHIMA Miyuki SUGANUMA Shinya MOCHIDUKI Mitsuho YAMADA
Over the last 10 years, tablets have spread to the point where we can now read electronic books (e-books) like paper books. There is a long history of studies of eye movement during reading. Remarkable results have been reported for reading experiments in which displayed letters are changed in conjunction with eye movement during reading. However, these studies were conducted in the 1970s, and it is difficult to judge the detailed descriptions of the experimental techniques and whether the display time was correctly controlled when changing letters. Here, we propose an experimental system to control the display information exactly, as well as the display time, and inspect the results of past reading research, with the aim of being at the forefront of reading research in the e-book era.
Miho SHINOHARA Reiko KOYAMA Shinya MOCHIDUKI Mitsuho YAMADA
We paid attention the amount of change for each resolution by specifying the gaze position of images, and measured accommodation and convergence eye movement when watching high-resolution images. Change of convergence angle and accommodation were like the actual depth composition in the image when images were presented in the high-resolution.
Miho SHINOHARA Yukina TAMURA Shinya MOCHIDUKI Hiroaki KUDO Mitsuho YAMADA
We investigated the function in the Lateral Geniculate Nucleus of avoidance behavior due to the inconsistency between binocular retinal images due to blue from vergence eye movement based on avoidance behavior caused by the inconsistency of binocular retinal images when watching the rim of a blue-yellow equiluminance column.
Shinya MOCHIDUKI Reina WATANABE Hideaki TAKAHIRA Mitsuho YAMADA
We measured head and eye movements while subjects viewed 4K high-definition images to clarify the influence of different viewing positions. Subjects viewed three images from nine viewing positions: three viewing distances x three viewing positions. Though heads rotated toward the center irrespective of viewing screen positions, they also tended to turn straight forward as the viewing distance became close to an image.
Takahide OTOMO Shinya MOCHIDUKI Eriko ISHII Yuko HOSHINO Mitsuho YAMADA
We can enjoy various video contents such as movies in several ways. In this report, we show the effects of content differences on physiological parameters such as eye movements and CFF. This time we confirmed the difference in responses that after watching a movie. In addition, a consistent change that can infer that due to a movie was also indicated. Our results showed that content differences affect the parameters. This suggests the possibility that the influence of movie contents on the viewer can be evaluated by physiological parameters.
Shinya MOCHIDUKI Ayaka NUNOMURA Hiroaki KUDO Mitsuho YAMADA
We studied the detection of the incongruence between the two eyes' retinal images from occlusion perception. We previously analyzed the evasion action caused by occlusion by using green-red equiluminance, which is processed by parvocellular cells. Here we analyzed this action by using yellow-blue equiluminance, which is said to be treated by koniocellular cells and parvocellular cells. We observed that there were the cases in which the subject could perceive incongruence by the occlusion and other cases in which the subject could not perceive it. Significant differences were not seen in all conditions. Because a difference was seen in an evasion action at the time of the rim occlusion gaze when we compare the result for the yellow-blue equiluminance with the green-red equiluminance, it is suggested that the response for each equiluminance is different. We were able to clarify the characteristic difference between parvocellular cells and koniocellular cells from an occlusion experiment.
Shinya MOCHIDUKI Reina WATANABE Miyuki SUGANUMA Hiroaki KUDO Noboru OHNISHI Mitsuho YAMADA
Stereoscopic vision technology is applied in a wide range of fields, from 3D movies to medical care. Stereoscopic vision makes it possible to observe images in parallax between both eyes. However, parallax images cannot be used all the time due to a situation called “occlusion”, in which an object is hidden in the depths by another object. In this case, different images are projected on the right and left retina. Here, we propose a psychology experiment to elucidate the function of parvocellular cells in the LGN of the visual cortex of the brain using occlusion perception. As a new psychology experiment to clarify whether parvocellular cells in the LGN of the visual cortex, said to process chromatic and luminance information, can detect a disagreement between the retinal images produced by each eye, we measured convergence eye movement when gazing at the rim of a column under occlusion using an equiluminance random dot pattern. When eye movement prevented the disagreement of the retinal images caused by occlusion, we thought that convergence eye movement to move both eyes in front of the rim or divergence eye movement to move them behind the rim would occur. In other words, we thought that we could clarify whether there was parvocellular system process agreement or disagreement between the right and left retinal images under equiluminance. Therefore, we examined whether a system to detect disagreement between the retinal images exists in the brain when gazing at the rim of a column onto which an equiluminance random dot texture was mapped. Results suggested that the mechanism to avoid disagreement between the retinal images of the eyes caused by occlusion occurs in the parvocellular cells, which mainly process color information, as well as in the magnocellular cells, which process binocular disparity.