The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Shiow-Fen HWANG(2hit)

1-2hit
  • An Efficient Distributed Clustering Scheme for Ad-hoc Wireless Networks

    Chyi-Ren DOW  Jyh-Horng LIN  Shiow-Fen HWANG  Yi-Wen WANG  

     
    PAPER-Wireless Communication Switching

      Vol:
    E85-B No:8
      Page(s):
    1561-1571

    In ad-hoc mobile radio networks, nodes are organized into non-overlapping clusters. These clusters are independently controlled and dynamically reconfigured when the topology changes. This work presents a Distributed Label clustering scheme (DL) that partitions nodes into clusters using a weight-based criterion. The DL scheme allows the border nodes to determine their roles first to avoid selecting unsuitable clusterheads. In order to resolve the clusterhead change problem, the DL scheme restricts the number of clusterhead changes. The DL scheme also restricts the size of the virtual backbone by reducing the number of clusters. This scheme is distributed and can be executed at each node with only the knowledge of one-hop neighbors. The simulation results demonstrate that our scheme outperforms other clustering schemes in terms of the number of clusters, stability of the clusters and control overhead when the topology changes.

  • A Capacity-Aware and Multipath-Supported Traffic Control Framework for Wireless Mesh Networks

    Pa HSUAN  Chyi-Ren DOW  Kuen-Chu LAI  Pei-Jung LIN  Shiow-Fen HWANG  

     
    PAPER-Network

      Vol:
    E94-B No:5
      Page(s):
    1323-1331

    To provide convenient wireless access, wireless mesh networks (WMNs) can be rapidly deployed and connected for mobile clients. Although route redirection traffic control schemes and dynamic routing metrics can be used to improve the performance of WMNs, more of the available network bandwidth will be consumed by control message exchange. This paper proposes a capacity-aware and multipath supported traffic control framework in WMNs. The proposed framework can be used to dispatch data traffic in a multipath manner to improve the utilization of wireless links and forwarding latency. A hierarchical queue architecture is proposed to monitor and classify network traffic without the effort of control message exchange. Our traffic control strategy, which is based on local minimization of the forwarding latency, consists of two phases to automatically adapt to the utilization rate of the network links. In the first phase, the incoming packets are dispatched to the lower level queues according to the Internet gateway capacity. In the second phase, the packets are dispatched to the related network links according to the link load. The current study implements the proposed traffic control system on NS2 for simulation and on Linux 2.6 for real traffic analysis. Experimental results show that the proposed framework improves the throughput and reduces forwarding delay with an approximate minimum delay time. The results also show that the behavior of the long-term delay model can be applied to short-term traffic control methods in WMNs.