The search functionality is under construction.

Author Search Result

[Author] Sho AOYAMA(2hit)

1-2hit
  • Impact of Spatial Diversity Reception on SAR Reduction in Implant Body Area Networks

    Daisuke ANZAI  Sho AOYAMA  Masafumi YAMANAKA  Jianqing WANG  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E95-B No:12
      Page(s):
    3822-3829

    Wireless capsule endoscopy (WCE) is now one of most important applications in implant body area networks (BANs). WCE requires high throughput performance due to its real-time data transmission, whereas the communication performance depends much on the transmit power, which is strictly regulated in order to satisfy a safety guideline in terms of specific absorption rate (SAR). Spatial diversity reception is well known to improve the wireless performance without any temporal and spectral resource expansion. Additionally, applying spatial diversity reception to WCE systems can be expected to not only improve the wireless communication performance but also to reduce SAR. Therefore, this paper investigates the impact of spatial diversity reception on SAR levels for the 400 MHz medical implant communication service (MICS) band. To begin with, based on finite-difference time-domain (FDTD) simulations for implant BAN propagation with a numerical human body model, we first calculate the BER performance and derive the required transmit power to secure a permissible BER. Then, this paper calculates the local peak SAR under the required transmit power when the implant transmitter moves through the digestive organs. Finally, our simulation results demonstrate that applying spatial diversity reception can significantly reduce SAR in implant BANs.

  • Performance Evaluation on RSSI-Based Localization for Capsule Endoscopy Systems with 400 MHz MICS Band Signals

    Daisuke ANZAI  Sho AOYAMA  Jianqing WANG  

     
    PAPER

      Vol:
    E95-B No:10
      Page(s):
    3081-3087

    One of promising application offered by implant body area networks (BANs) is a capsule endoscope localization system. To begin with, this paper performs finite-difference time-domain (FDTD) simulations on implant BAN propagation with a numerical human model, and investigates the propagation characteristics of implant BAN signals at 400 MHz medical implant communication service (MICS) band. Then, the paper presents a capsule endoscope localization system which utilizes only received signal strength indicator (RSSI) and two estimation methods, such as a maximum likelihood (ML) estimation method and a least squares (LS) method. Furthermore, we evaluate the two localization methods by two computer simulation scenarios. Our computer simulation results demonstrate that the ML localization can improve the location estimation accuracy as compared with the LS localization, that is, our performance comparison reveals that a careful consideration the propagation characteristics of implant BANs signals is efficient in terms of estimation performance improvement in capsule endoscope localization.