The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Sho TAKAHASHI(3hit)

1-3hit
  • Biomimetics Image Retrieval Platform Open Access

    Miki HASEYAMA  Takahiro OGAWA  Sho TAKAHASHI  Shuhei NOMURA  Masatsugu SHIMOMURA  

     
    INVITED PAPER

      Pubricized:
    2017/05/19
      Vol:
    E100-D No:8
      Page(s):
    1563-1573

    Biomimetics is a new research field that creates innovation through the collaboration of different existing research fields. However, the collaboration, i.e., the exchange of deep knowledge between different research fields, is difficult for several reasons such as differences in technical terms used in different fields. In order to overcome this problem, we have developed a new retrieval platform, “Biomimetics image retrieval platform,” using a visualization-based image retrieval technique. A biological database contains a large volume of image data, and by taking advantage of these image data, we are able to overcome limitations of text-only information retrieval. By realizing such a retrieval platform that does not depend on technical terms, individual biological databases of various species can be integrated. This will allow not only the use of data for the study of various species by researchers in different biological fields but also access for a wide range of researchers in fields ranging from materials science, mechanical engineering and manufacturing. Therefore, our platform provides a new path bridging different fields and will contribute to the development of biomimetics since it can overcome the limitation of the traditional retrieval platform.

  • Binary Sparse Representation Based on Arbitrary Quality Metrics and Its Applications

    Takahiro OGAWA  Sho TAKAHASHI  Naofumi WADA  Akira TANAKA  Miki HASEYAMA  

     
    PAPER-Image, Vision

      Vol:
    E101-A No:11
      Page(s):
    1776-1785

    Binary sparse representation based on arbitrary quality metrics and its applications are presented in this paper. The novelties of the proposed method are twofold. First, the proposed method newly derives sparse representation for which representation coefficients are binary values, and this enables selection of arbitrary image quality metrics. This new sparse representation can generate quality metric-independent subspaces with simplification of the calculation procedures. Second, visual saliency is used in the proposed method for pooling the quality values obtained for all of the parts within target images. This approach enables visually pleasant approximation of the target images more successfully. By introducing the above two novel approaches, successful image approximation considering human perception becomes feasible. Since the proposed method can provide lower-dimensional subspaces that are obtained by better image quality metrics, realization of several image reconstruction tasks can be expected. Experimental results showed high performance of the proposed method in terms of two image reconstruction tasks, image inpainting and super-resolution.

  • Player Tracking in Far-View Soccer Videos Based on Composite Energy Function

    Kazuya IWAI  Sho TAKAHASHI  Takahiro OGAWA  Miki HASEYAMA  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E97-D No:7
      Page(s):
    1885-1892

    In this paper, an accurate player tracking method in far-view soccer videos based on a composite energy function is presented. In far-view soccer videos, player tracking methods that perform processing based only on visual features cannot accurately track players since each player region becomes small, and video coding causes color bleeding between player regions and the soccer field. In order to solve this problem, the proposed method performs player tracking on the basis of the following three elements. First, we utilize visual features based on uniform colors and player shapes. Second, since soccer players play in such a way as to maintain a formation, which is a positional pattern of players, we use this characteristic for player tracking. Third, since the movement direction of each player tends to change smoothly in successive frames of soccer videos, we also focus on this characteristic. Then we adopt three energies: a potential energy based on visual features, an elastic energy based on formations and a movement direction-based energy. Finally, we define a composite energy function that consists of the above three energies and track players by minimizing this energy function. Consequently, the proposed method achieves accurate player tracking in far-view soccer videos.