1-3hit |
Cell losses due to statistical multiplexing of bursty traffic in ATM networks tend to be in clusters rather than uniformly scattered. Since the quality of service for users is quite sensitive to such bursty losses, it is necessary to characterize the temporal behavior of cell loss. This paper reports results obtained from investigating overload period and underload period in an ATM multiplexer with heterogeneous burst traffic input, using a bufferless model. The overload period is defined as the time interval when the instantaneous bit rate exceeds the output link capacity. With the bufferless model, we assume that all the instantaneous bit rate exceeding the link capacity is lost, and the loss rate is called "virtual cell loss probability". The virtual cell loss probability during the overload period, average overload period and underload period durations are analyzed. Numerical results show that the cell loss probability in overload periods and the average duration of overload periods (normalized by burst duration) are not very sensitive to link load or average rate/peak rate ratio of the burst, and that they are approximately on the order of peak bandwidth/link capacity ratio for the multiplexed burst. Furthermore, it is also shown that the mean underload duration is simply given as the inverse of the overall cell loss probability multiplied by the constant value inherently determined by peak bandwidth and link capacity. With these observations, applications to the call acceptance control using these measures are also presented.
Shohei SATO Yoshiaki YAMAGUCHI Ryuji SUGITA
The uniform magnetic field of various strength was applied to the perpendicularly and in-plane demagnetized media, and the change in each magnetic cluster state was investigated as the fundamental investigation of the influence of demagnetization method on noise during signal recording on the stacked perpendicular recording media. The results showed that the in-plane demagnetization can achieve lower noise level if the recording field is not very high. In other words, the in-plane demagnetization is an effective way to achieve lower noise in transition area, near track edge of recorded bit, and in high-density bit. In addition, the simulation clarified that this noise reduction can be explained using the idea of sub-domain structure in the in-plane demagnetized media.
This paper surveys the developments and achievements of teletraffic studies in Japan. It briefly covers the period preceding 1970, then focuses on the period after 1970. Rather than attempting to cover the entire field of teletraffic engineering, it places its emphasis on basic models.