1-1hit |
Yumi SAKEMI Yasuyuki NOGAMI Shoichi TAKEUCHI Yoshitaka MORIKAWA
In the case of Barreto-Naehrig pairing-friendly curves of embedding degree 12 of order r, recent efficient Ate pairings such as R-ate, optimal, and Xate pairings achieve Miller loop lengths of(1/4) ⌊log2 r⌋. On the other hand, the twisted Ate pairing requires (3/4) ⌊log2 r⌋ loop iterations, and thus is usually slower than the recent efficient Ate pairings. This paper proposes an improved twisted Ate pairing using Frobenius maps and a small scalar multiplication. The proposed idea splits the Miller's algorithm calculation into several independent parts, for which multi-pairing techniques apply efficiently. The maximum number of loop iterations in Miller's algorithm for the proposed twisted Ate pairing is equal to the (1/4) ⌊log2 r ⌋ attained by the most efficient Ate pairings.