The search functionality is under construction.

Author Search Result

[Author] Shoki INOUE(2hit)

1-2hit
  • Clipping and Filtering-Based Adaptive PAPR Reduction Method for Precoded OFDM-MIMO Signals

    Yoshinari SATO  Masao IWASAKI  Shoki INOUE  Kenichi HIGUCHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:9
      Page(s):
    2270-2280

    This paper presents a new adaptive peak-to-average power ratio (PAPR) reduction method based on clipping and filtering (CF) for precoded orthogonal frequency division multiplexing (OFDM)-multiple-input multiple-output (MIMO) transmission. While the conventional CF method adds roughly the same interference power to each of the transmission streams, the proposed method suppresses the addition of interference power to the streams with good channel conditions. Since the sum capacity is dominated by the capacity of the streams under good channel conditions and the interference caused by the PAPR reduction process severely degrades the achievable capacity for these streams, the proposed method significantly improves the achievable sum capacity compared to the conventional CF method for a given PAPR. Simulation results show the capacity gain by using the proposed method compared to the conventional method.

  • Throughput/ACLR Performance of CF-Based Adaptive PAPR Reduction Method for Eigenmode MIMO-OFDM Signals with AMC

    Shoki INOUE  Teruo KAWAMURA  Kenichi HIGUCHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:9
      Page(s):
    2293-2300

    This paper proposes an enhancement to a previously reported adaptive peak-to-average power ratio (PAPR) reduction method based on clipping and filtering (CF) for eigenmode multiple-input multiple-output (MIMO) — orthogonal frequency division multiplexing (OFDM) signals. We enhance the method to accommodate the case with adaptive modulation and channel coding (AMC). Since the PAPR reduction process degrades the signal-to-interference and noise power ratio (SINR), the AMC should take into account this degradation before PAPR reduction to select accurately the modulation scheme and coding rate (MCS) for each spatial stream. We use the lookup table-based prediction of SINR after PAPR reduction, in which the interference caused by the PAPR reduction is obtained as a function of the stream index, frequency block index, clipping threshold for PAPR reduction, and input backoff (IBO) of the power amplifier. Simulation results show that the proposed PAPR reduction method increases the average throughput compared to the conventional CF method for a given adjacent channel leakage power ratio (ACLR) when we assume practical AMC.