The search functionality is under construction.

Author Search Result

[Author] Shoma TANAKA(2hit)

1-2hit
  • Highly Accurate Vegetation Loss Model with Seasonal Characteristics for High-Altitude Platform Station Open Access

    Hideki OMOTE  Akihiro SATO  Sho KIMURA  Shoma TANAKA  HoYu LIN  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2022/04/13
      Vol:
    E105-B No:10
      Page(s):
    1209-1218

    High-Altitude Platform Station (HAPS) provides communication services from an altitude of 20km via a stratospheric platform such as a balloon, solar-powered airship, or other aircraft, and is attracting much attention as a new mobile communication platform for ultra-wide coverage areas and disaster-resilient networks. HAPS can provide mobile communication services directly to the existing smartphones commonly used in terrestrial mobile communication networks such as Fourth Generation Long Term Evolution (4G LTE), and in the near future, Fifth Generation New Radio (5G NR). In order to design efficient HAPS-based cell configurations, we need a radio wave propagation model that takes into consideration factors such as terrain, vegetation, urban areas, suburban areas, and building entry loss. In this paper, we propose a new vegetation loss model for Recommendation ITU-R P.833-9 that can take transmission frequency and seasonal characteristics into consideration. It is based on measurements and analyses of the vegetation loss of deciduous trees in different seasons in Japan. Also, we carried out actual stratospheric measurements in the 700MHz band in Kenya to extend the lower frequency limit. Because the measured results show good agreement with the results predicted by the new vegetation loss model, the model is sufficiently valid in various areas including actual HAPS usage.

  • Propagation Loss Model with Human Body Shielding for High-Altitude Platform Station Communications

    Hideki OMOTE  Akihiro SATO  Sho KIMURA  Shoma TANAKA  HoYu LIN  Takashi HIKAGE  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2022/04/11
      Vol:
    E105-B No:10
      Page(s):
    1219-1230

    In recent years, High-Altitude Platform Station (HAPS) has become the most interesting topic for next generation mobile communication systems, because platforms such as Unmanned Aerial Vehicles (UAVs), balloons, airships can provide ultra-wide coverage, up to 200km in diameter, from altitudes of around 20 km. It also offers resiliency to damage caused by disasters and so ensures the stability and reliability of mobile communications. In order to further integrate HAPS with existing terrestrial mobile communication networks in providing mobile services to users, radio wave propagation models such as terrain, vegetation loss, human shielding loss, building entry loss, urban/suburban areas must be taken into consideration when designing HAPS-based cell configurations. This paper proposes a human body shielding propagation loss model that considers the basic signal attenuation by the human body at high elevation angles. It also analyzes the effect of changes in actual urban/suburban environments due to the arrival of multipath radio waves for HAPS communications in the frequency range of 0.7 to 3.3GHz. Measurements in actual urban/rural environments in Japan and actual stratospheric base station measurements in Kenya are carried out to confirm the validity of the proposed model. Since the measured results agree well with the results predicted by the proposed model, the model is good enough to provide estimates of human loss in various environments.