1-2hit |
Ryo TAKAI Shoya UCHIDA Yukitoshi SANADA
Overlapped FFT based energy detection has been proposed as a signal detection scheme in dynamic spectrum access. The overlapped FFT scheme increases the number of FFT frames to reduce the variance of squared noise and improves the detection performance. As the FFT frames are overlapped, correlation values between the frames affect to the detection performance. This paper proposes the window functions which decrease the correlation values between adjacent FFT bins. Numerical results obtained through computer simulation show that novel window functions generated by upsampling a Hamming window improves the detection performance by 0.09. However, this window function suffers more from adjacent channel interference than a conventional window. Therefore, this paper also proposes a two step detection scheme to achieve higher detection performance and to avoid the influence of the adjacent channel signal. Numerical results also indicate that the proposed scheme improves the detection performance and reduces the effect from the adjacent channel signal.
Hiroyuki ODANI Shoya UCHIDA Ryo TAKAI Yukitoshi SANADA
Delayed correlation has been used to detect orthogonal frequency division multiplexing symbols with cyclic prefix in spectrum sensing. Because of the frequency offset, the outputs of the delayed correlation do not lie only on the real axis of a complex plane. Therefore, the absolute value of the outputs of the delayed correlation is employed. Furthermore, with the use of a filter bank, the number of the outputs of the delayed correlators increases and the averaging over the outputs decreases the noise variance. This paper proposes a new delayed correlation scheme that uses a filter bank and employs the absolute of the outputs of delayed correlation. The proposed scheme improves the probability of detection as the number of the branches of the delayed correlators increases. In the case of 6 branches, the proposed scheme reduces the required sample energy by 1dB the probability of detection of 0.9.