1-4hit |
Degui CHEN Hongwu LIU Haitao SUN Qingjiang LIU Jingshu ZHANG
The interrupting characteristics of low voltage current limiting circuit breakers have directly relationship with the magnitude and distribution of magnetic field produced by contact system and splitter plates. In order to analyze the influence of configuration of contact system on current limiting characteristics, 3D magnetic field of arc chamber (including contact system, arc, splitter plates) is calculated. Furthermore, the electromagnetic repulsion force of movable contact is also calculated. The results can be used to improve configuration of arc quenching chamber. The cooperation between operating mechanism and electromagnetic repulsion force is also analyzed in this paper.
Tongyu GE Junhai LUO Shu ZHANG
In mobile wireless sensor networks, coverage and energy are two significant factors determining network performance. When taking both factors into account, the challenges include how to select and migrate nodes to keep coverage quality, how to forecast and prevent potential coverage holes and how to use energy control in mobile networks. In this paper, we propose a new Coverage Maintenance and Energy Control (CMEC) algorithm to achieve and keep high coverage quality and energy efficiency. For CMEC, we provide a new cost metric for selecting migration nodes. Our simulation results confirm that our algorithm improves coverage performance and lifetime of network.
Haoqi XIONG Jingjing GAO Chongjin ZHU Yanling LI Shu ZHANG Mei XIE
The MR image segmentation is always a challenging problem because of the intensity inhomogeneity. Many existing methods don't reach their expected segmentations; besides their implementations are usually complicated. Therefore, we originally interleave the extended Otsu segmentation with bias field estimation in an energy minimization. Via our proposed method, the optimal segmentation and bias field estimation are achieved simultaneously throughout the reciprocal iteration. The results of our method not only satisfy the required classification via its applications in the synthetic and the real images, but also demonstrate that our method is superior to the baseline methods in accordance with the performance analysis of JS metrics.
Shu ZHANG Katsuyoshi IIDA Suguru YAMAGUCHI
Because most link-state routing protocols, such as OSPF and IS-IS, calculate routes using the Dijkstra algorithm, which poses scalability problems, implementors often introduce an artificial delay to reduce the number of route calculations. Although this delay directly affects IP packet forwarding, it can be acceptable when the network topology does not change often. However, when the topology of a network changes frequently, this delay can lead to a complete loss of IP reachability for the affected network prefixes during the unstable period. In this paper, we propose the Cached Shortest-path Tree (CST) approach, which speeds up intra-domain routing convergence without extra execution of the Dijkstra algorithm, even if the routing for a network is quite unstable. The basic idea of CST is to cache shortest-path trees (SPTs) of network topologies that appear frequently, and use these SPTs to instantly generate a routing table when the topology after a change matches one in the caches. CST depends on a characteristic that we found from an investigation of routing instability conducted on the WIDE Internet in Japan. That is, under unstable routing conditions, both frequently changing Link State Advertisements (LSAs) and their instances tend to be limited. At the end of this paper, we show CST's effectiveness by a trace-driven simulation.