1-3hit |
This letter describes the power absorption of a cylindrical man model placed near a flat reflector exposed to TE microwave. The numerical results show that the absorption is in some cases an order of magnitude or more greater than that of the man model without a reflector.
A method is proposed for estimating the error of whole-body average specific absorption rate (SAR) of an infinite-length cylindrical model of man exposed to TM microwave. At high frequencies, the average SAR of the infinite-length cylindrical model is approximately 5% smaller than that of the finite-length cylindrical model.
A large part of our daily lives is spent surrounded by buildings and other structures. In this paper, we used an infinitelength, multilayered cylindrical model to rigorously analyze the microwave specific absorption rate (SAR) of a human standing near a 90corner wall. At frequencies above 1 GHz, the interactions between the microwaves, the human body (including layer resonance), and the corner cause complex changes in the average SAR. We have shown numerically that the SAR with a corner present is up to four times larger than when there is no corner, and that the average SAR of TE waves at frequencies below 1 GHz is up to 10 times greater than when there is no corner.