The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Sirinart TANGRUAMSUB(2hit)

1-2hit
  • Position-Invariant Robust Features for Long-Term Recognition of Dynamic Outdoor Scenes

    Aram KAWEWONG  Sirinart TANGRUAMSUB  Osamu HASEGAWA  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E93-D No:9
      Page(s):
    2587-2601

    A novel Position-Invariant Robust Feature, designated as PIRF, is presented to address the problem of highly dynamic scene recognition. The PIRF is obtained by identifying existing local features (i.e. SIFT) that have a wide baseline visibility within a place (one place contains more than one sequential images). These wide-baseline visible features are then represented as a single PIRF, which is computed as an average of all descriptors associated with the PIRF. Particularly, PIRFs are robust against highly dynamical changes in scene: a single PIRF can be matched correctly against many features from many dynamical images. This paper also describes an approach to using these features for scene recognition. Recognition proceeds by matching an individual PIRF to a set of features from test images, with subsequent majority voting to identify a place with the highest matched PIRF. The PIRF system is trained and tested on 2000+ outdoor omnidirectional images and on COLD datasets. Despite its simplicity, PIRF offers a markedly better rate of recognition for dynamic outdoor scenes (ca. 90%) than the use of other features. Additionally, a robot navigation system based on PIRF (PIRF-Nav) can outperform other incremental topological mapping methods in terms of time (70% less) and memory. The number of PIRFs can be reduced further to reduce the time while retaining high accuracy, which makes it suitable for long-term recognition and localization.

  • Self-Organizing Incremental Associative Memory-Based Robot Navigation

    Sirinart TANGRUAMSUB  Aram KAWEWONG  Manabu TSUBOYAMA  Osamu HASEGAWA  

     
    PAPER-Information Network

      Vol:
    E95-D No:10
      Page(s):
    2415-2425

    This paper presents a new incremental approach for robot navigation using associative memory. We defined the association as node→action→node where node is the robot position and action is the action of a robot (i.e., orientation, direction). These associations are used for path planning by retrieving a sequence of path fragments (in form of (node→action→node) → (node→action→node) →…) starting from the start point to the goal. To learn such associations, we applied the associative memory using Self-Organizing Incremental Associative Memory (SOIAM). Our proposed method comprises three layers: input layer, memory layer and associative layer. The input layer is used for collecting input observations. The memory layer clusters the obtained observations into a set of topological nodes incrementally. In the associative layer, the associative memory is used as the topological map where nodes are associated with actions. The advantages of our method are that 1) it does not need prior knowledge, 2) it can process data in continuous space which is very important for real-world robot navigation and 3) it can learn in an incremental unsupervised manner. Experiments are done with a realistic robot simulator: Webots. We divided the experiments into 4 parts to show the ability of creating a map, incremental learning and symbol-based recognition. Results show that our method offers a 90% success rate for reaching the goal.