1-2hit |
Woo-Goo PARK Je-Hun RHEE Sook-Jin LEE Sang-Ho LEE
In this paper, a new overload control strategy is proposed for a call control processor (CCP) in the base station controller (BSC) and processor utilization is measured. The proposed overload control strategy can regulate the call attempts by adopting measured processor utilization. A function, specifically a linear interpolation function based on Inverse Transform theory is used to convert controlled predictive average load rate in a call rejection rate. Then a call admission rate is obtained from the call rejection rate. Simulation shows that the proposed algorithm yields better performance than the conventional algorithm does under the heavy transient overload status in terms of call admission rate.
Minwoo JEONG Yongseouk CHOI Sook-Jin LEE
As the most compelling candidate for 5G, millimeter-wave communication has drawn considerable interest, despite the absence of systematic research on its performance. Therefore, this study investigates millimeter-wave cellular networks and their use of existing frequency reuse schemes and scheduling methods. To evaluate the performance of these networks, we configure a system-level simulator that reflects the eNodeB architecture and frame structure designed to overcome the millimeter-wave frequency characteristics of the Giga Korea Project. Simulations conducted using various combinations of frequency reuse schemes and scheduling methods are described. We found that the best performing radio resource management scheme changes according to the number of user equipment accessing the eNodeB. The results of this study will contribute to performance estimations of the capacity and fairness of cellular-based millimeter-wave communication systems before they are deployed.