The search functionality is under construction.

Author Search Result

[Author] Stanislav S. MAKHANOV(3hit)

1-3hit
  • Speech Analysis Method Based on Source-Filter Model Using Multivariate Empirical Mode Decomposition

    Surasak BOONKLA  Masashi UNOKI  Stanislav S. MAKHANOV  Chai WUTIWIWATCHAI  

     
    PAPER-Speech and Hearing

      Vol:
    E99-A No:10
      Page(s):
    1762-1773

    We propose a speech analysis method based on the source-filter model using multivariate empirical mode decomposition (MEMD). The proposed method takes multiple adjacent frames of a speech signal into account by combining their log spectra into multivariate signals. The multivariate signals are then decomposed into intrinsic mode functions (IMFs). The IMFs are divided into two groups using the peak of the autocorrelation function (ACF) of an IMF. The first group characterized by a spectral fine structure is used to estimate the fundamental frequency F0 by using the ACF, whereas the second group characterized by the frequency response of the vocal-tract filter is used to estimate formant frequencies by using a peak picking technique. There are two advantages of using MEMD: (i) the variation in the number of IMFs is eliminated in contrast with single-frame based empirical mode decomposition and (ii) the common information of the adjacent frames aligns in the same order of IMFs because of the common mode alignment property of MEMD. These advantages make the analysis more accurate than with other methods. As opposed to the conventional linear prediction (LP) and cepstrum methods, which rely on the LP order and cut-off frequency, respectively, the proposed method automatically separates the glottal-source and vocal-tract filter. The results showed that the proposed method exhibits the highest accuracy of F0 estimation and correctly estimates the formant frequencies of the vocal-tract filter.

  • Phase Portrait Analysis for Multiresolution Generalized Gradient Vector Flow

    Sirikan CHUCHERD  Annupan RODTOOK  Stanislav S. MAKHANOV  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E93-D No:10
      Page(s):
    2822-2835

    We propose a modification of the generalized gradient vector flow field techniques based on multiresolution analysis and phase portrait techniques. The original image is subjected to mutliresolutional analysis to create a sequence of approximation and detail images. The approximations are converted into an edge map and subsequently into a gradient field subjected to the generalized gradient vector flow transformation. The procedure removes noise and extends large gradients. At every iteration the algorithm obtains a new, improved vector field being filtered using the phase portrait analysis. The phase portrait is applied to a window with a variable size to find possible boundary points and the noise. As opposed to previous phase portrait techniques based on binary rules our method generates a continuous adjustable score. The score is a function of the eigenvalues of the corresponding linearized system of ordinary differential equations. The salient feature of the method is continuity: when the score is high it is likely to be the noisy part of the image, but when the score is low it is likely to be the boundary of the object. The score is used by a filter applied to the original image. In the neighbourhood of the points with a high score the gray level is smoothed whereas at the boundary points the gray level is increased. Next, a new gradient field is generated and the result is incorporated into the iterative gradient vector flow iterations. This approach combined with multiresolutional analysis leads to robust segmentations with an impressive improvement of the accuracy. Our numerical experiments with synthetic and real medical ultrasound images show that the proposed technique outperforms the conventional gradient vector flow method even when the filters and the multiresolution are applied in the same fashion. Finally, we show that the proposed algorithm allows the initial contour to be much farther from the actual boundary than possible with the conventional methods.

  • Automatic Tortuosity-Based Retinopathy of Prematurity Screening System

    Lassada SUKKAEW  Bunyarit UYYANONVARA  Stanislav S. MAKHANOV  Sarah BARMAN  Pannet PANGPUTHIPONG  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E91-D No:12
      Page(s):
    2868-2874

    Retinopathy of Prematurity (ROP) is an infant disease characterized by increased dilation and tortuosity of the retinal blood vessels. Automatic tortuosity evaluation from retinal digital images is very useful to facilitate an ophthalmologist in the ROP screening and to prevent childhood blindness. This paper proposes a method to automatically classify the image into tortuous and non-tortuous. The process imitates expert ophthalmologists' screening by searching for clearly tortuous vessel segments. First, a skeleton of the retinal blood vessels is extracted from the original infant retinal image using a series of morphological operators. Next, we propose to partition the blood vessels recursively using an adaptive linear interpolation scheme. Finally, the tortuosity is calculated based on the curvature of the resulting vessel segments. The retinal images are then classified into two classes using segments characterized by the highest tortuosity. For an optimal set of training parameters the prediction is as high as 100%.