The search functionality is under construction.

Author Search Result

[Author] Sung Je HONG(8hit)

1-8hit
  • Dynamic Two-Tier Cell Structure for Bandwidth Reservation of Handoffs in Cellular Networks

    Jae Keun PARK  Wan Yeon LEE  Sung Je HONG  Jong KIM  

     
    LETTER-Mobile Information Network

      Vol:
    E91-A No:10
      Page(s):
    3003-3005

    To satisfy both the bandwidth efficiency of low-speed mobile hosts (MHs) and seamless handoff of high-speed MHs in cellular networks, this paper proposes a reservation scheme which exploits a dynamic two-tier cell structure and the handoff probability. The dynamic two-tier cell structure determines the reservation and non-reservation zones according to the speed of MHs. The handoff probability is calculated using the moving speed and the direction of MHs.

  • Fast Verification of Hash Chains with Reduced Storage

    Dae Hyun YUM  Jin Seok KIM  Pil Joong LEE  Sung Je HONG  

     
    PAPER-Cryptography and Information Security

      Vol:
    E94-A No:1
      Page(s):
    383-391

    A hash chain H for a hash function hash(·) is a sequence of hash values ⟨ xn, xn-1,..., x0 ⟩, where x0 is a secret value, xi is generated by xi = hash(xi-1) for 1 ≤ i ≤ n, and xn is a public value. Hash values of H are disclosed gradually from xn-1 to x0. The correctness of a disclosed hash value xi can be verified by checking the equation xn =? hashn-i(xi). To speed up the verification, Fischlin introduced a check-bit scheme at CT-RSA 2004. The basic idea of the check-bit scheme is to output some extra information cb, called a check-bit vector, in addition to the public value xn, which allows each verifier to perform only a fraction of the original work according to his or her own security level. We revisit the Fischlin's check-bit scheme and show that the length of the check-bit vector cb can be reduced nearly by half. The reduced length of cb is close to the theoretic lower bound.

  • Probabilistic Checkpointing

    Hyochang NAM  Jong KIM  Sung Je HONG  Sunggu LEE  

     
    PAPER-Fault Tolerance

      Vol:
    E85-D No:7
      Page(s):
    1093-1104

    For checkpointing to be practical, it has to introduce low overhead for the targeted application. As a means of reducing the overhead of checkpointing, this paper proposes a probabilistic checkpointing method, which uses block encoding to detect the modified memory area between two consecutive checkpoints. Since the proposed technique uses block encoding to detect the modified area, the possibility of aliasing exists in encoded words. However, this paper shows that the aliasing probability is near zero when an 8-byte encoded word is used. The performance of the proposed technique is analyzed and measured by using experiments. An analytic model which predicts the checkpointing overhead is first constructed. By using this model, the block size that produces the best performance for a given target program is estimated. In most cases, medium block sizes, i.e., 128 or 256 bytes, show the best performance. The proposed technique has also been implemented on Unix based systems, and its performance has been measured in real environments. According to the experimental results, the proposed technique reduces the overhead by 11.7% in the best case and increases the overhead by 0.5% in the worst case in comparison with page-based incremental checkpointing.

  • An Adaptive FEC Scheme for Firm Real-Time Multimedia Communications in Wireless Networks

    Kyong Hoon KIM  Jong KIM  Sung Je HONG  

     
    PAPER

      Vol:
    E88-B No:7
      Page(s):
    2794-2801

    The technological development of wireless environment has made real-time multimedia communications possible in wireless networks. Many studies have been done on real-time communications in wireless networks in order to overcome a higher bit error rate in wireless channels. However, none of work deals with firm real-time communications which can be applied to multimedia communications. In this paper, we propose an adaptive error correcting scheme for firm real-time multimedia communications in wireless networks in order to maximize the expected net profit. The proposed scheme adaptively selects an error correcting code under the current air state and the message state of a message stream. Throughout simulation results, we show that the suggested scheme provides more profit than single error-correcting code schemes.

  • Evaluation of Two Load-Balancing Primary-Backup Process Allocation Schemes

    Heejo LEE  Jong KIM  Sung Je HONG  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E82-D No:12
      Page(s):
    1535-1544

    In this paper, we show two process allocation schemes to tolerate multiple faults when the primary-backup replication method is used. The first scheme, called multiple backup scheme, is running multiple backup processes for each process to tolerate multiple faults. The second scheme, called regenerative backup scheme, is running only one backup process for each process, but re-generates backup processes for processes that do not have a backup process after a fault occurrence to keep the primary-backup process pair available. In both schemes, we propose heuristic process allocation methods for balancing loads in spite of the occurrence of faults. Then we evaluate and compare the performance of the proposed heuristic process allocation methods using simulation. Next, we analyze the reliability of two schemes based on their fault-tolerance capability. For the analysis of fault-tolerance capability, we find the degree of fault tolerance for each scheme. Then we find the reliability of each scheme using Markov chains. The comparison results of two schemes indicate that the regenerative single backup process allocation scheme is more suitable than the multiple backup allocation scheme.

  • A Boolean Factorization Using an Extended Boolean Matrix

    Oh-Hyeong KWON  Sung Je HONG  Jong KIM  

     
    PAPER-Computer Hardware and Design

      Vol:
    E81-D No:12
      Page(s):
    1466-1472

    A factorization, which provides a factored form, is an extremely important part of multi-level logic synthesis. The number of literals in a factored form is a good estimate of the complexity of a logic function, and can be translated directly into the number of transistors required for implementation. Factored forms are described as either algebraic or Boolean, according to the trade-off between run-time and optimization. A Boolean factored form contains fewer number of literals than an algebraic factored form. In this paper, we present a new method for a Boolean factorization. The key idea is to build an extended Boolean matrix using cokernel/kernel pairs and kernel/kernel pairs together. The extended Boolean matrix makes it possible to yield a Boolean factored form. We also propose a heuristic method for covering of the extended Boolean matrix. Experimental results on various benchmark circuits show the improvements in literal counts over the algebraic factorization based on Brayton's Boolean matrix.

  • Lightweight Distance Bounding Protocol against Relay Attacks

    Jin Seok KIM  Kookrae CHO  Dae Hyun YUM  Sung Je HONG  Pil Joong LEE  

     
    LETTER-Information Network

      Vol:
    E95-D No:4
      Page(s):
    1155-1158

    Traditional authentication protocols are based on cryptographic techniques to achieve identity verification. Distance bounding protocols are an enhanced type of authentication protocol built upon both signal traversal time measurement and cryptographic techniques to accomplish distance verification as well as identity verification. A distance bounding protocol is usually designed to defend against the relay attack and the distance fraud attack. As there are applications to which the distance fraud attack is not a serious threat, we propose a streamlined distance bounding protocol that focuses on the relay attack. The proposed protocol is more efficient than previous protocols and has a low false acceptance rate under the relay attack.

  • Security Condition for Exact Localization in Wireless Ad Hoc Networks

    Jin Seok KIM  Dae Hyun YUM  Sung Je HONG  Jong KIM  Pil Joong LEE  

     
    LETTER-Network

      Vol:
    E95-B No:7
      Page(s):
    2459-2462

    As deployment of wireless ad hoc networks for location-based services increases, accurate localization of mobile nodes is becoming more important. Localization of a mobile node is achieved by estimating its distances from a group of anchor nodes. If some anchors are malicious and colluding, localization accuracy cannot be guaranteed. In this article, we present the security conditions for exact localization in the presence of colluding malicious anchors. We first derive the minimum number of truthful anchors that are required for exact localization in 2-D Euclidean space where some anchors may be collinear. Second, we extend our security condition to 3-D localization where some anchors may be coplanar.