1-2hit |
Policy in security devices such as firewalls and Network Intrusion Prevention Systems (NIPS) is usually implemented as a sequence of rules. This allows network packets to proceed or to be discarded based on rule's decision. Since attack methods are increasing rapidly, a huge number of security rules are generated and maintained in security devices. Under attack or during heavy traffic, the policy configured wrong creates security holes and prevents the system from deciding quickly whether to allow or deny a packet. Anomalies between the rules occur when there is overlap among the rules. In this paper, we propose a new method to detect anomalies among rules and generate new rules without configuration error in multiple security devices as well as in a single security device. The proposed method cuts the overlap regions among rules into minimum overlap regions and finds the abnormal domain regions of rules' predicates. Classifying rules by the network traffic flow, the proposed method not only reduces computation overhead but blocks unnecessary traffic among distributed devices.
Network intrusion detection systems rely on a signature-based detection engine. When under attack or during heavy traffic, the detection engines need to make a fast decision whether a packet or a sequence of packets is normal or malicious. However, if packets have a heavy payload or the system has a great deal of attack patterns, the high cost of payload inspection severely diminishes detection performance. Therefore, it would be better to avoid unnecessary payload scans by checking the protocol fields in the packet header, before executing their heavy operations of payload inspection. When payload inspection is necessary, it is better to compare a minimum number of attack patterns. In this paper, we propose new methods to classify attack signatures and make pre-computed multi-pattern groups. Based on IDS rule analysis, we grouped the signatures of attack rules by a multi-dimensional classification method adapted to a simplified address flow. The proposed methods reduce unnecessary payload scans and make light pattern groups to be checked. While performance improvements are dependent on a given networking environment, the experimental results with the DARPA data set and university traffic show that the proposed methods outperform the most recent Snort by up to 33%.