The search functionality is under construction.

Author Search Result

[Author] Suofei ZHANG(2hit)

1-2hit
  • Object Tracking with Embedded Deformable Parts in Dynamic Conditional Random Fields

    Suofei ZHANG  Zhixin SUN  Xu CHENG  Lin ZHOU  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2016/01/19
      Vol:
    E99-D No:4
      Page(s):
    1268-1271

    This work presents an object tracking framework which is based on integration of Deformable Part based Models (DPMs) and Dynamic Conditional Random Fields (DCRF). In this framework, we propose a DCRF based novel way to track an object and its details on multiple resolutions simultaneously. Meanwhile, we tackle drastic variations in target appearance such as pose, view, scale and illumination changes with DPMs. To embed DPMs into DCRF, we design specific temporal potential functions between vertices by explicitly formulating deformation and partial occlusion respectively. Furthermore, temporal transition functions between mixture models bring higher robustness to perspective and pose changes. To evaluate the efficacy of our proposed method, quantitative tests on six challenging video sequences are conducted and the results are analyzed. Experimental results indicate that the method effectively addresses serious problems in object tracking and performs favorably against state-of-the-art trackers.

  • Object Tracking by Unified Semantic Knowledge and Instance Features

    Suofei ZHANG  Bin KANG  Lin ZHOU  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2018/11/30
      Vol:
    E102-D No:3
      Page(s):
    680-683

    Instance features based deep learning methods prompt the performances of high speed object tracking systems by directly comparing target with its template during training and tracking. However, from the perspective of human vision system, prior knowledge of target also plays key role during the process of tracking. To integrate both semantic knowledge and instance features, we propose a convolutional network based object tracking framework to simultaneously output bounding boxes based on different prior knowledge as well as confidences of corresponding Assumptions. Experimental results show that our proposed approach retains both higher accuracy and efficiency than other leading methods on tracking tasks covering most daily objects.