The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Susumu NODA(5hit)

1-5hit
  • Wavelength-Switchable Mid-Infrared Narrowband Thermal Emitters Based on Quantum Wells and Photonic Crystals Open Access

    Takuya INOUE  Menaka DE ZOYSA  Takashi ASANO  Susumu NODA  

     
    INVITED PAPER

      Vol:
    E101-C No:7
      Page(s):
    545-552

    Development of narrowband thermal emitters whose emission wavelengths are dynamically tunable is highly desired for various applications including the sensing of gases and chemical compounds. In this paper, we review our recent demonstration of wavelength-switchable mid-infrared thermal emitters based on multiple quantum wells (MQWs) and photonic crystals (PCs). Through the control of absorptivity by using intersubband transitions in MQWs and optical resonances in PC slabs, we demonstrate novel control of thermal emission, including realization of high-Q (Q>100) thermal emission, dynamic control of thermal emission (∼MHz), and electrical wavelength switching of thermal emission from a single device.

  • 2D Photonic Crystal Surface-Emitting Laser Using Triangular-Lattice Structure

    Susumu NODA  Masahiro IMADA  

     
    INVITED PAPER

      Vol:
    E85-C No:1
      Page(s):
    45-51

    A 2D photonic crystal surface-emitting laser using a triangular lattice is developed, and current-injected lasing oscillation is demonstrated. From consideration of the Bragg diffraction condition in the 2D triangular-lattice structure, it is shown that the 2D coupling phenomenon occurs in the structure. As a result of the 2D periodicity of the structure, the longitudinal mode and lateral mode can be controlled, and stable single-mode oscillation is possible over a large 2D area. The lasing mode of the structure is analyzed by calculating the photonic band diagram by the 2D plane-wave expansion method, and we show that four band edges at which the lasing oscillation can occur exist at the Γ point. Current-injected lasing oscillation is successfully demonstrated at room temperature under pulsed conditions. The threshold current density is 3.2 kA/cm2 and the lasing wavelength is 1.285 µm. From the near-field and far-field patterns, it is shown that large-area 2D (diameter 480 µm) lasing oscillation occurs in the device and the divergence angle is very narrow (less than 1.8). We also demonstrate the correspondence between the measured lasing wavelengths and calculated band diagram by comparing the polarization characteristics with the calculated distribution of the electromagnetic field. The results indicate that 2D coherent lasing oscillation occurs due to the multi-directional coupling effect in the 2D photonic crystal. Finally, we show that the polarization patterns of the lasers can be controlled by introducing artificial lattice defects from the theoretical calculation.

  • FOREWORD Open Access

    Susumu Noda  

     
    FOREWORD

      Vol:
    E100-C No:2
      Page(s):
    149-149
  • Finite-Difference Time-Domain Simulation of Two-Dimensional Photonic Crystal Surface-Emitting Laser Having a Square-Lattice Slab Structure

    Mitsuru YOKOYAMA  Susumu NODA  

     
    PAPER

      Vol:
    E87-C No:3
      Page(s):
    386-392

    By means of the three-dimensional (3D) finite-difference time domain (FDTD) method, we have investigated in detail the optical properties of a two-dimensional photonic crystal (PC) surface-emitting laser having a square-lattice structure. The 3D-FDTD calculation is carried out for the finite size PC slab structure. The device is based on band-edge resonance, and plural band edges are present at the corresponding band edge point. For these band edges, we calculate the mode profile in the PC slab, far field pattern (FFP) and polarization mode of the surface-emitted component, and photon lifetime. FFPs are shown to be influenced by the finiteness of the structure. Quality (Q) factor, which is a dimensionless quantity representing photon lifetime, is introduced. The out-plane radiation loss in the direction normal to the PC plane greatly influences the total Q factor of resonant mode and is closely related with the band structure. As a result, Q factors clearly differ among these band edges. These results suggest that these band edges include resonant modes that are easy to lase and resonant modes that are difficult to lase.

  • FOREWORD

    Susumu NODA  Toshihiko BABA  

     
    FOREWORD

      Vol:
    E87-C No:3
      Page(s):
    257-257