1-4hit |
In wireless ad hoc networks, providing an authentication service to verify that the broadcast packet is from the claimed sender without modification, is challenging due mainly to the inherently lossy wireless links. This paper presents a novel Secure and Reliable Broadcasting that reinforces the broadcast authentication with reliability and energy-efficiency capabilities by using the cooperative diversity to superimpose two distinct signals. The proposed protocol achieves significant savings of transmission power and fair assurance of reliability among receivers.
With proliferation of smart handsets capable of mobile Internet, the severity of malware attacks targeting such handsets is rapidly increasing, thereby requiring effective countermeasure for them. However, existing signature-based solutions are not suitable for resource-poor handsets due to the excessive run-time overhead of matching against ever-increasing malware pattern database as well as the limitation of detecting well-known malware only. To overcome these drawbacks, we present a bio-inspired approach to discriminate malware (non-self) from normal programs (self) by replicating the processes of biological immune system. Our proposed approach achieves superior performance in terms of detecting 83.7% of new malware or their variants and scalable storage requirement that grows very slowly with inclusion of new malware, making it attractive for use with mobile handsets.
In this letter, we present a route discovery protocol for ad hoc multi-hop cellular networks which uses directional information towards the base station. The proposed protocol, based on the reactive approach, reduces flooding as much as possible. To quantify this, we analyze its performance in terms of how much progress it makes per hop and how much reduction in routing packet number it achieves per route discovery. The analytical, as well as simulation, results demonstrate that the proposed protocol significantly reduces flooding overheads and finds a route to the base station in a robust manner.
Soohyun OH Jin Wook LEE Taejoon PARK Tae-Chang JO
In wireless cellular networks, streaming of continuous media (with strict QoS requirements) over wireless links is challenging due to their inherent unreliability characterized by location-dependent, bursty errors. To address this challenge, we present a two-step scheduling algorithm for a base station to provide streaming of continuous media to wireless clients over the error-prone wireless links. The proposed algorithm is capable of minimizing the packet loss rate of individual clients in the presence of error bursts, by transmitting packets in the round-robin manner and also adopting a mechanism for channel prediction and swapping.