The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Taichi MIYA(2hit)

1-2hit
  • Autonomous Gateway Mobility Control for Heterogeneous Drone Swarms: Link Stabilizer and Path Optimizer

    Taichi MIYA  Kohta OHSHIMA  Yoshiaki KITAGUCHI  Katsunori YAMAOKA  

     
    PAPER-Ad Hoc Network

      Pubricized:
    2021/10/18
      Vol:
    E105-B No:4
      Page(s):
    432-448

    Heterogeneous drone swarms are large hybrid drone clusters in which multiple drones with different wireless protocols are interconnected by some translator drones called GWs. Nowadays, because inexpensive drones, such as toy drones, have become widely used in society, the technology for constructing huge drone swarms is attracting more and more attention. In this paper, we propose an autonomous GW mobility control algorithm for establishing stabilized and low-delay communication among heterogeneous clusters, assuming that only GWs are controllable and relocatable to ensure the flexible operationality of drone swarms. Our proposed algorithm is composed of two independent sub algorithms - the Link Stabilizer and the Path Optimizer. The Stabilizer maintains the neighbor links and consists of two schemes: the neighbor clustering based on relative velocities and the GW velocity calculation using a kinetic model. The Optimizer creates a shortcut to reduce the end-to-end delay for newly established communication by relocating the GW dynamically. We also propose a conceptual protocol design to implement this algorithm into real-world drone swarms in a distributed manner. Computer simulation reveals that the Stabilizer improved the connection stability for all three mobility models even under the high node mobility, and the Optimizer reduced the communication delay by the optimal shortcut formation under any conditions of the experiments and its performance is comparable to the performance upper limit obtained by the brute-force searching.

  • Adaptive GW Relocation and Strategic Flow Rerouting for Heterogeneous Drone Swarms

    Taichi MIYA  Kohta OHSHIMA  Yoshiaki KITAGUCHI  Katsunori YAMAOKA  

     
    PAPER-Network

      Pubricized:
    2022/10/17
      Vol:
    E106-B No:4
      Page(s):
    331-351

    A drone swarm is a robotic architecture having multiple drones cooperate to accomplish a mission. Nowadays, heterogeneous drone swarms, in which a small number of gateway drones (GWs) act as protocol translators to enable the mixing of multiple swarms that use independent wireless protocols, have attracted much attention from many researchers. Our previous work proposed Path Optimizer — a method to minimize the number of end-to-end path-hops in a remote video monitoring system using heterogeneous drone swarms by autonomously relocating GWs to create a shortcut in the network for each communication request. However, Path Optimizer has limitations in improving communication quality when more video sessions than the number of GWs are requested simultaneously. Path Coordinator, which we propose in this paper, achieves a uniform reduction in end-to-end hops and maximizes the allowable hop satisfaction rate regardless of the number of sessions by introducing the cooperative and synchronous relocation of all GWs. Path Coordinator consists of two phases: first, physical optimization is performed by geographically relocating all GWs (relocation phase), and then logical optimization is achieved by modifying the relaying GWs of each video flow (rerouting phase). Computer simulations reveal that Path Coordinator adapts to various environments and performs as well as we expected. Furthermore, its performance is comparable to the upper limits possible with brute-force search.