1-2hit |
Heiga ZEN Keiichi TOKUDA Takashi MASUKO Takao KOBAYASIH Tadashi KITAMURA
A statistical speech synthesis system based on the hidden Markov model (HMM) was recently proposed. In this system, spectrum, excitation, and duration of speech are modeled simultaneously by context-dependent HMMs, and speech parameter vector sequences are generated from the HMMs themselves. This system defines a speech synthesis problem in a generative model framework and solves it based on the maximum likelihood (ML) criterion. However, there is an inconsistency: although state duration probability density functions (PDFs) are explicitly used in the synthesis part of the system, they have not been incorporated into its training part. This inconsistency can make the synthesized speech sound less natural. In this paper, we propose a statistical speech synthesis system based on a hidden semi-Markov model (HSMM), which can be viewed as an HMM with explicit state duration PDFs. The use of HSMMs can solve the above inconsistency because we can incorporate the state duration PDFs explicitly into both the synthesis and the training parts of the system. Subjective listening test results show that use of HSMMs improves the reported naturalness of synthesized speech.
Heiga ZEN Takashi MASUKO Keiichi TOKUDA Takayoshi YOSHIMURA Takao KOBAYASIH Tadashi KITAMURA
This paper describes the explicit modeling of a state duration's probability density function in HMM-based speech synthesis. We redefine, in a statistically correct manner, the probability of staying in a state for a time interval used to obtain the state duration PDF and demonstrate improvements in the duration of synthesized speech.