1-3hit |
The nonlinear optical properties of organics with unsaturated bonds were compared with those of inorganics including semiconductors and dielectrics. Because of the mesomeric effect, namely quantum mechanical resonance effect among configurations, aromatic molecules and polymers have larger optical nonlinear parameters defined as δ(n)=X(n)/(X(l))n both for the second (n=2) and third-order (n=3) nonlinearities. Experimental results of ultrafast nonlinear response of conjugated polymers, especially polydiacetylenes, were described and a model is proposed to explain the relaxation processes of photoexcitations in the conjugated polymers. Applying the model constructed on the basis of the extensive experimental study, we propose model polymers to obtain ultrafast resonant optical nonlinearity.
The nonlinear optical properties of organics with unsaturated bonds were compared with those of inorganics including semiconductors and dielectrics. Because of the mesomeric effect, namely quantum mechanical resonance effect among configurations, aromatic molecules and polymers have larger optical nonlinear parameters defined as δ(n)X(n)/(X(1))n both for the second (n2) and third-order (n3) nonlinearities. Experimental results of ultrafast nonlinear response of conjugated polymers, especially polydiacetylenes, were described and a model is proposed to explain the relaxation processes of photoexcitations in the conjugated polymers. Applying the model constructed on the basis of the extensive experimental study, we propose model polymers to obtain ultrafast resonant optical nonlinearity.
Akira SHIRAKAWA Takayoshi KOBAYASHI
An ultra-broadband optical parametric amplification can be attained by a noncollinear phase-matching. The group-velocity matching of the signal and idler reduces the signal-pulse width to 14-fs in an optical parametric amplifier based on a β-BaB2O4 crystal pumped by a second harmonics of a Ti: sapphire regenerative amplifier. This simple novel method shows the potential light source of a tunable sub-10-fs pulse in a visible region.