The search functionality is under construction.

Author Search Result

[Author] Takayuki YOSHIDA(4hit)

1-4hit
  • A Novel Millimeter-Wave IC on Si Substrate Using Flip-Chip Bonding Technology

    Hiroyuki SAKAI  Yorito OTA  Kaoru INOUE  Takayuki YOSHIDA  Kazuaki TAKAHASHI  Suguru FUJITA  Morikazu SAGAWA  

     
    PAPER

      Vol:
    E78-C No:8
      Page(s):
    971-978

    A new mm-wave IC, constructed by flip-chip bonded heterojunction transistors and microstrip lines formed on Si substrate, has been proposed and demonstrated by using MBB (micro bump boding) technology. Millimeter-wave characteristics of the MBB region has been estimated by electro-magnetic field analysis. Good agreements between calculated and measured characteristics of this new IC (named MFIC: millimeter-wave flip-chip IC) have been obtained up to 60 GHz band. Several MFIC amplifiers with their designed performances have been successfully fabricated.

  • High Frequency Flip-Chip Bonding Technologies and Their Application to Microwave/Millimeter-Wave ICs

    Hiroyuki SAKAI  Takayuki YOSHIDA  Morikazu SAGAWA  

     
    INVITED PAPER-Functional Modules and the Design Technology

      Vol:
    E81-C No:6
      Page(s):
    810-818

    This paper describes new IC design concepts using flip-chip bonding technologies for microwave and millimeter-wave circuit integration. Two types of bonding technologies, stud bump bonding (SBB) and micro bump bonding (MBB) are introduced, and their applications to microwave and millimeter-wave ICs are presented. Receiver front-end hybrid IC (HIC) for cellular and PHS handsets using SBB and new millimeter-wave ICs on Si substrate called millimeter flip-chip IC (MFIC) using MBB have been designed and fabricated to prove their advantages. These flip-chip bonding technologies are experimentally proven to provide excellent solutions for high performance and compact-sized ICs with low-cost. The HIC concept is applicable consistently over a wide range of devices from RF/microwave to millimeter-wave region.

  • Development of K-Band Front-End Devices for Broadband Wireless Communication Systems Using Millimeter-Wave Flip-Chip IC Technology

    Kazuaki TAKAHASHI  Suguru FUJITA  Hiroyuki YABUKI  Takayuki YOSHIDA  Yoshito IKEDA  Hiroyuki SAKAI  Morikazu SAGAWA  

     
    PAPER-Functional Modules and the Design Technology

      Vol:
    E81-C No:6
      Page(s):
    827-833

    This paper describes new millimeter-wave ICs based on flip-chip bonding using micro bumps on a low cost silicon substrate, named millimeter-wave flip-chip ICs (MFICs). They have significant advantages such as good performance, low cost and excellent flexibility in the active device selection which makes them superior to conventional monolithic microwave integrated circuits (MMICs). In order to demonstrate these advantages, a K-band front-end block for a broadband wireless communication equipment was designed and fabricated. This front-end block consists of four MFIC chips: a low noise amplifier (LNA), a down converter and two medium power amplifiers. These chips are designed to satisfy stable operation conditions using a simplified model derived for micro bump bonding (MBB). In experimental measurements; the LNA using heterojunction field-effect transistors (HFETs) had an 18 dB gain, the down converter using an HFET had a 9. 5 dB conversion loss, and two power amplifiers using heterojunction bipolar transistors (HBTs) had saturated powers of 13. 0 dBm and 11. 7 dBm, respectively. The performance for each of the developed ICs agreed with the designed values, and satisfied circuit requirements. These results show that the MFIC technique is a potential technology for manufacturing multi-functional millimeter-wave ICs.

  • Miniaturized Front-End HIC Using MBB Technology for Mobile Communication Equipment

    Junji ITOH  Tadayoshi NAKATSUKA  Takayuki YOSHIDA  Mitsuru NISHITSUJI  Tomoya UDA  Osamu ISHIKAWA  

     
    PAPER-Functional Modules and the Design Technology

      Vol:
    E81-C No:6
      Page(s):
    834-840

    Highly miniaturization technology in front-end GaAs Hybrid IC for mobile communication equipment will be presented. A combination of MBB (micro bump bonding) technology and the new GaAs IC fabrication process using high dielectric constant (εr) thin film technology has achieved a super small HIC with low cost and low power consumption. The new HIC was constructed of only a ceramic substrate in which the spiral inductors were formed on it and the GaAs IC chip that was bonded by using MBB technology. The MBB technology lead the HIC to a lower temperature process without soldering, a smaller bump diameter, at shorter intervals and the lowest parasitic in the bump. The advantage of the small bonding pad of the IC contributes to miniaturize the IC chip and reduces the chip cost. The GaAs IC process technology using high-εr thin film achieves the integration of all capacitors in the IC without increasing the chip size. Furthermore, low power consumption was achieved by 0. 5-µm LDD BP-MESFET with a high k-value. Although capacitors were integrated on the IC, all of the inductors were formed on the top of the ceramic substrate using a thin film metal process. This was used due to its large occupation area when it was integrated on the IC, and produced a low Q-factor. As a results, the chip was minimized to a size of 0. 81. 0 mm2 and achieved a low-cost chip. Two types of HICs were fabricated for 880 MHz cellular band and 1. 9 GHz PHS (Personal Handy phone System) band. The HIC at 880 MHz measures only 5. 05. 01. 0 mm3, and offered a conversion gain of 25 dB, a noise figure of 4. 2 dB and an image rejection ratio of 12 dB at 2. 7 V and at a power supply of 3. 5 mA. The HIC for 1. 9 GHz measures only 3. 54. 01. 0 mm3, and showed a conversion gain of 16. 0 dB, a II P3 of -16. 0 dBm, and an image rejection ratio of over 20 dBc at 3. 0 V and at power supply of 4. 5 mA.