The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Takeshi ITAGAKI(5hit)

1-5hit
  • Joint Frequency-Domain Equalization and Antenna Diversity Combining for Orthogonal Multicode DS-CDMA Signal Transmissions in a Frequency-Selective Fading Channel

    Takeshi ITAGAKI  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technology

      Vol:
    E87-B No:7
      Page(s):
    1954-1963

    Orthogonal multicode direct sequence code division multiple access (DS-CDMA) has the flexibility in offering various data rate services. However, in a frequency-selective fading channel, the bit error rate (BER) performance is severely degraded since the othogonality among spreading codes is partially lost. In this paper, we apply frequency-domain equalization and antenna diversity combining, used in multi-carrier CDMA (MC-CDMA), to orthogonal multicode DS-CDMA in order to restore the code othogonality while achieving frequency and antenna diversity effect. It is found by computer simulations that the joint use of frequency-domain equalization and antenna diversity combining can significantly improve the BER performance of orthogonal multicode DS-CDMA in a frequency-selective fading channel.

  • Frequency-Domain Rake Combining for Antenna Diversity Reception of DS-CDMA Signals

    Fumiyuki ADACHI  Takeshi ITAGAKI  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:9
      Page(s):
    2781-2784

    Frequency-domain representation of the well-known time-domain rake combining for the antenna diversity reception of DS-CDMA signals is derived. Two receiver structures using frequency-domain rake combining are presented. Frequency-domain rake combining can alleviate the complexity problem of the time-domain rake arising from too many paths in a severe frequency selective fading channel at the cost of guard interval insertion. The results shown in this paper show a possibility that a DS-CDMA approach still remain to be promising for broadband wireless access technique.

  • Chip Interleaved Multicode DS-CDMA with MMSEC in A Fading Channel

    Takeshi ITAGAKI  Tomoki SAO  Deepshikha GARG  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technology

      Vol:
    E87-B No:1
      Page(s):
    79-87

    Direct sequence code division multiple access (DS-CDMA) provides flexible data transmission in wide range of data rates by the use of orthogonal multicode multiplexing. In a multipath fading environment, the transmission performance of multicode DS-CDMA degrades as that of single code DS-CDMA does. Chip interleaving is known to improve the bit error rate (BER) performance of the single code transmission by altering the fading channel into severely time selective fading channel. However, this partially destroys orthogonality property among spreading codes and thus, significantly degrades the BER performance of multicode DS-CDMA. In this paper, we propose the joint use of chip interleaving and time-domain minimum mean square error combining (MMSEC) equalization to improve the multicode DS-CDMA transmission performance. It is confirmed by computer simulations that the joint use of chip interleaving and MMSEC equalization significantly improves the BER performance of multicode DS-CDMA and achieves better BER performance compared to the single code DS-CDMA using chip interleaving and maximal ratio combining (MRC).

  • Performance Comparison of Delay Transmit Diversity and Frequency-Domain Space-Time Coded Transmit Diversity for Orthogonal Multicode DS-CDMA Signal Reception Using Frequency-Domain Equalization

    Takeshi ITAGAKI  Kazuaki TAKEDA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E87-B No:9
      Page(s):
    2719-2728

    In a severe frequency-selective fading channel, the bit error rate (BER) performance of orthogonal multicode DS-CDMA is severely degraded since the orthogonality property of spreading codes is partially lost. The frequency-selectivity of a fading channel can be exploited by using frequency-domain equalization to improve the BER performance. Further performance improvement can be obtained by using transmit diversity. In this paper, joint transmit diversity and frequency-domain equalization is presented for the reception of orthogonal multicode DS-CDMA signals in a frequency-selective fading channel. As for transmit diversity, delay transmit diversity (DTD) and frequency-domain space-time transmit diversity (STTD) are considered. The achievable BER performance of multicode DS-CDMA in a frequency-selective Rayleigh fading channel is evaluated by computer simulation. It is shown that the frequency-domain STTD significantly improves the BER performance irrespective of the degree of the channel frequency-selectivity while DTD is useful only for a weak frequency-selective channel.

  • Joint Use of Frequency-Domain Equalization and Transmit/Receive Antenna Diversity for Single-Carrier Transmissions

    Kazuaki TAKEDA  Takeshi ITAGAKI  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technology

      Vol:
    E87-B No:7
      Page(s):
    1946-1953

    The joint use of frequency-domain equalization and antenna diversity is presented for single-carrier (SC) transmission in a frequency-selective fading channel. Frequency-domain equalization techniques using minimum mean square error (MMSE), orthogonal restoration combining (ORC) and maximum ratio combining (MRC), those used in multi-carrier code division multiple access (MC-CDMA), are considered. As antenna diversity techniques, receive diversity and delay transmit diversity (DTD) are considered. Bit error rate (BER) performance achievable with the joint use of frequency-domain equalization and antenna diversity is evaluated by computer simulation.