The search functionality is under construction.

Author Search Result

[Author] Takeshi YADA(3hit)

1-3hit
  • Fine-Grained Analysis of Compromised Websites with Redirection Graphs and JavaScript Traces

    Yuta TAKATA  Mitsuaki AKIYAMA  Takeshi YAGI  Takeshi YADA  Shigeki GOTO  

     
    PAPER-Internet Security

      Pubricized:
    2017/05/18
      Vol:
    E100-D No:8
      Page(s):
    1714-1728

    An incident response organization such as a CSIRT contributes to preventing the spread of malware infection by analyzing compromised websites and sending abuse reports with detected URLs to webmasters. However, these abuse reports with only URLs are not sufficient to clean up the websites. In addition, it is difficult to analyze malicious websites across different client environments because these websites change behavior depending on a client environment. To expedite compromised website clean-up, it is important to provide fine-grained information such as malicious URL relations, the precise position of compromised web content, and the target range of client environments. In this paper, we propose a new method of constructing a redirection graph with context, such as which web content redirects to malicious websites. The proposed method analyzes a website in a multi-client environment to identify which client environment is exposed to threats. We evaluated our system using crawling datasets of approximately 2,000 compromised websites. The result shows that our system successfully identified malicious URL relations and compromised web content, and the number of URLs and the amount of web content to be analyzed were sufficient for incident responders by 15.0% and 0.8%, respectively. Furthermore, it can also identify the target range of client environments in 30.4% of websites and a vulnerability that has been used in malicious websites by leveraging target information. This fine-grained analysis by our system would contribute to improving the daily work of incident responders.

  • Analyzing and Reducing the Impact of Traffic on Large-Scale NAT

    Ryoichi KAWAHARA  Tatsuya MORI  Takeshi YADA  Noriaki KAMIYAMA  

     
    PAPER-Network

      Vol:
    E95-B No:9
      Page(s):
    2815-2827

    We investigate the impact of traffic on the performance of large-scale NAT (LSN), since it has been attracting attention as a means of better utilizing the limited number of global IPv4 addresses. We focus on the number of active flows because they drive up the LSN memory requirements in two ways; more flows must be held in LSN memory, and more global IPv4 addresses must be prepared. Through traffic measurement data analysis, we found that more than 1% of hosts generated more than 100 TCP flows or 486 UDP flows at the same time, and on average, there were 1.43-3.99 active TCP flows per host, when the inactive timer used to clear the flow state from a flow table was set to 15 s. When the timer is changed from 15 s to 10 min, the number of active flows increases more than tenfold. We also investigate how to reduce the above impact on LSN in terms of saving memory space and accommodating more users for each global IPv4 address. We show that to save memory space, regulating network anomalies can reduce the number of active TCP flows on an LSN by a maximum of 48.3% and by 29.6% on average. We also discuss the applicability of a batch flow-arrival model for estimating the variation in the number of active flows, when taking into account that the variation is needed to prepare an appropriate memory space. One way to allow each global IPv4 address to accommodate more users is to better utilize destination IP address information when mapping a source IP address from a private address to a global IPv4 address. This can effectively reduce the required number of global IPv4 addresses by 85.9% for TCP traffic and 91.9% for UDP traffic on average.

  • Forecasting Traffic Volumes for Intelligent Telecommunication Services Based on Service Characteristics

    Takeshi YADA  Isami NAKAJIMA  Ichiro IDE  Hideyo MURAKAMI  

     
    PAPER-Network Design, Operation, and Management

      Vol:
    E81-B No:12
      Page(s):
    2487-2494

    A method is proposed for deriving a traffic characteristics model that can be used to forecast the traffic volume for intelligent telecommunication services. A sort of regression analysis with dummy variables is used to represent the service quantitatively and to construct the traffic characteristics model. Recursive least squares estimation, which is a special case of the Kalman filter, is applied to the traffic characteristics model to forecast the traffic volume. In the proposed modeling and forecasting, qualitative factors representing a certain service attribute are selected and using an information criterion, the model with the best fit is identified as the most suitable forecasting model. Numerical results using practical observation data showed that the proposed method produces an accurate forecast and is thus effective for practical use.