1-4hit |
Takumi KOBAYASHI Chika SUGIMOTO Ryuji KOHNO
Ultra-wideband (UWB) communications is used for medical information communication technology (MICT) as a dependable and safe communication technology in recent years. On the other hand, there are existing various UWB systems that are not used for MICT. Generally, these UWB systems use almost the same frequency band. Therefore, they interfere to each other in general transmission channel environment. In our previous work, a novel UWB pulse shape modulation using modified Hermite pulse is proposed as a multiple user access scheme. In this paper, we propose a mitigation method for inter-user interference and inter-system interference using combination of orthogonal pulse shape modulation and orthogonal matched filter (OMF) detector. The purposes of our system are to detect all signals of users in the same UWB system and to reduce the unknown interference from other UWB systems at the same time. This paper provides performance evaluation results based on both of analytical and numerical evaluation. Simulation results show that the proposed system can detect the signals that were transmitted from the same UWB system using orthogonal pulse set, while the proposed system can reduce the interference from unknown UWB systems at the same time. The theoretical analysis is expected that noise tolerance of our proposal will be deteriorated in the additive Gaussian noise channel in comparison with the conventional matched filter. It is confirmed that the numerical evaluation illustrates such noise tolerance equivalent to the theoretical analysis result.
Ryuji KOHNO Takumi KOBAYASHI Chika SUGIMOTO Yukihiro KINJO Matti HÄMÄLÄINEN Jari IINATTI
This paper provides perspectives for future medical healthcare social services and businesses that integrate advanced information and communication technology (ICT) and data science. First, we propose a universal medical healthcare platform that consists of wireless body area network (BAN), cloud network and edge computer, big data mining server and repository with machine learning. Technical aspects of the platform are discussed, including the requirements of reliability, safety and security, i.e., so-called dependability. In addition, novel technologies for satisfying the requirements are introduced. Then primary uses of the platform for personalized medicine and regulatory compliance, and its secondary uses for commercial business and sustainable operation are discussed. We are aiming at operate the universal medical healthcare platform, which is based on the principle of regulatory science, regionally and globally. In this paper, trials carried out in Kanagawa, Japan and Oulu, Finland will be revealed to illustrate a future medical healthcare social infrastructure by expanding it to Asia-Pacific, Europe and the rest of the world. We are representing the activities of Kanagawa medical device regulatory science center and a joint proposal on security in the dependable medical healthcare platform. Novel schemes of ubiquitous rehabilitation based on analyses of the training effect by remote monitoring of activities and machine learning of patient's electrocardiography (ECG) with a neural network are proposed and briefly investigated.
Takumi KOBAYASHI Masahiro MINAGAWA Akira BABA Keizo KATO Kazunari SHINBO
Improvement of the on/off ratio in organic field-effect transistors through the use of pentacene and molybdenum trioxide (MoO3) layers was attempted via the preparation of a discontinuous MoO3 layer using a mesh mask. We prepared three types of devices. Device A had a conventional top-contact structure with an n-type Si wafer and a 200-nm-thick SiO2 film onto which we deposited a 70-nm-thick pentacene film and a 30-nm-thick layer of Au top electrodes. Devices B and C had a similar structure to device A but received a continuous and a discontinuous MoO3 layer, respectively. The off current in Device B was remarkably high; in contrast, the off current in Device C was reduced and dependent on the separation of the MoO3 layer. It was deduced that the high resistance of the area without MoO3 contributed to the reduced off current.
Satoshi SEIMIYA Takumi KOBAYASHI Ryuji KOHNO
In this study, under the assumption that a robot (1) has a remotely controllable yawing camera and (2) moves in a uniform linear motion, we propose and investigate how to improve the target recognition rate with the camera, by using wireless feedback loop control. We derive the allowable data rate theoretically, and, from the viewpoint of error and delay control, we propose and evaluate QoS-Hybrid ARQ schemes under data rate constraints. Specifically, the theoretical analyses derive the maximum data rate for sensing and control based on the channel capacity is derived with the Shannon-Hartley theorem and the path-loss channel model inside the human body, i.e. CM2 in IEEE 802.15.6 standard. Then, the adaptive error and delay control schemes, i.e. QoS-HARQ, are proposed considering the two constraints: the maximum data rate and the velocity of the camera's movement. For the performance evaluations, with the 3D robot simulator GAZEBO, we evaluated our proposed schemes in the two scenarios: the static environment and the dynamic environment. The results yield insights into how to improve the recognition rate considerably in each situation.