The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Takumi KOMORI(2hit)

1-2hit
  • Approximate Minimum Energy Point Tracking and Task Scheduling for Energy-Efficient Real-Time Computing

    Takumi KOMORI  Yutaka MASUDA  Jun SHIOMI  Tohru ISHIHARA  

     
    PAPER

      Pubricized:
    2021/09/06
      Vol:
    E105-A No:3
      Page(s):
    518-529

    In the upcoming Internet of Things era, reducing energy consumption of embedded processors is highly desired. Minimum Energy Point Tracking (MEPT) is one of the most efficient methods to reduce both dynamic and static energy consumption of a processor. Previous works proposed a variety of MEPT methods over the past years. However, none of them incorporate their algorithms with practical real-time operating systems, although edge computing applications often require low energy task execution with guaranteeing real-time properties. The difficulty comes from the time complexity for identifying an MEP and changing voltages, which often prevents real-time task scheduling. The conventional Dynamic Voltage and Frequency Scaling (DVFS) only scales the supply voltage. On the other hand, MEPT needs to adjust the body bias voltage in addition. This additional tuning knob makes MEPT much more complicated. This paper proposes an approximate MEPT algorithm, which reduces the complexity of identifying an MEP down to that of DVFS. The key idea is to linearly approximate the relationship between the processor frequency, supply voltage, and body bias voltage. Thanks to the approximation, optimal voltages for a specified clock frequency can be derived immediately. We also propose a task scheduling algorithm, which adjusts processor performance to the workload and then provides a soft real-time capability to the system. The operating system stochastically adjusts the average response time of the processor to be equal to a specified deadline. MEPT will be performed as a general task, and its overhead is considered in the calculation of the frequency. The experiments using a fabricated test chip and on-chip sensors show that the proposed algorithm is a maximum of 16 times more energy-efficient than DVFS. Also, the energy loss induced by the approximation is only 3% at most, and the algorithm does not sacrifice the fundamental real-time properties.

  • Virtualizing DVFS for Energy Minimization of Embedded Dual-OS Platform

    Takumi KOMORI  Yutaka MASUDA  Tohru ISHIHARA  

     
    PAPER

      Pubricized:
    2023/07/12
      Vol:
    E107-A No:1
      Page(s):
    3-15

    Recent embedded systems require both traditional machinery control and information processing, such as network and GUI handling. A dual-OS platform consolidates a real-time OS (RTOS) and general-purpose OS (GPOS) to realize efficient software development on one physical processor. Although the dual-OS platform attracts increasing attention, it often suffers from energy inefficiency in the GPOS for guaranteeing real-time responses of the RTOS. This paper proposes an energy minimization method called DVFS virtualization, which allows running multiple DVFS policies dedicated to the RTOS and GPOS, respectively. The experimental evaluation using a commercial microcontroller showed that the proposed hardware could change the supply voltage within 500 ns and reduce the energy consumption of typical applications by 60 % in the best case compared to conventional dual-OS platforms. Furthermore, evaluation using a commercial microprocessor achieved a 15 % energy reduction of practical open-source software at best.