The search functionality is under construction.

Author Search Result

[Author] Tamami MARUYAMA(3hit)

1-3hit
  • Offset Beam Planar Antenna Employing Low Loss Triangular Dielectric Phase Shifter

    Naoki HONMA  Fumio KIRA  Tamami MARUYAMA  Keizo CHO  Hideki MIZUNO  

     
    PAPER-Antennas and Propagation

      Vol:
    E86-B No:9
      Page(s):
    2720-2727

    Employing a triangular dielectric phase shifter simplifies the beam forming network of an offset beam array antenna because this structure achieves phase control in a single configuration. This paper proposes a design method for a low loss offset beam planar antenna that incorporates a triangular dielectric plate phase shifter on parallel microstrip feedlines. Our design method reduces the loss of the phase shifter by optimizing the microstrip line width. By using the proposed design equation, the optimum low loss phase shifter configuration can be easily established. In addition, this paper presents the actual design of a triangular plate considering size reduction. The results of experiments of the offset beam antenna indicate that our design method is effective in obtaining a simple, low loss, and compact configuration.

  • Vector Evaluated GA-ICT for Novel Optimum Design Method of Arbitrarily Arranged Wire Grid Model Antenna and Application of GA-ICT to Sector-Antenna Downsizing Problem

    Tamami MARUYAMA  Toshikazu HORI  

     
    PAPER-Antenna and Propagation

      Vol:
    E84-B No:11
      Page(s):
    3014-3022

    This paper proposes the Vector Evaluated GA-ICT (VEGA-ICT), a novel design method that employs the Genetic Algorithm (GA) to obtain the optimum antenna design. GA-ICT incorporates an arbitrary wire-grid model antenna to derive the optimum solution without any basic structure or limitation on the number of elements by merely optimizing an objective function. GA-ICT comprises the GA and an analysis method, the Improved Circuit Theory (ICT), with the following characteristics. (1) To achieve optimization of an arbitrary wire-grid model antenna without a basic antenna structure, the unknowns of the ICT are directly assigned to variables of the GA in the GA-ICT. (2) To achieve a variable number of elements, duplicate elements generated by using the same feasible region are deleted in the ICT. (3) To satisfy all complex design conditions, the GA-ICT generates an objective function using a weighting function generated based on electrical characteristics, antenna configuration, and size. (4) To overcome the difficulty of convergence caused by the nonlinearity of each term in the objective function, GA-ICT adopts a vector evaluation method. In this paper, the novel GA-ICT method is applied to downsize sector antennas. The calculation region in GA-ICT is reduced by adopting cylindrical coordinates and a periodic imaging structure. The GA-ICT achieves a 30% reduction in size compared to the previously reported small sector antenna, MS-MPYA, while retaining almost the same characteristics.

  • Interdigital and Multi-Via Structures for Mushroom-Type Metasurface Reflectors

    Taisei URAKAMI  Tamami MARUYAMA  Shimpei NISHIYAMA  Manato KUSAMIZU  Akira ONO  Takahiro SHIOZAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E107-B No:2
      Page(s):
    309-320

    The novel patch element shapes with the interdigital and multi-via structures for mushroom-type metasurface reflectors are proposed for controlling the reflection phases. The interdigital structure provides a wide reflection phase range by changing the depth of the interdigital fingers. In addition, the multi-via structure provides the higher positive reflection phases such as near +180°. The sufficient reflection phase range of 360° and the low polarization dependent properties could be confirmed by the electromagnetic field simulation. The metasurface reflector for the normal incident plane wave was designed. The desired reflection angles and sharp far field patterns of the reflected beams could be confirmed in the simulation results. The prototype reflectors for the experiments should be designed in the same way as the primary reflector design of the reflector antenna. Specifically, the reflector design method based on the ray tracing method using the incident wave phase was proposed for the prototype. The experimental radiation pattern for the reflector antenna composed of the transmitting antenna (TX) and the prototype metasurface reflector was similar to the simulated radiation pattern. The effectiveness of the proposed structures and their design methods could be confirmed by these simulation and experiment results.