The search functionality is under construction.

Author Search Result

[Author] Tao LV(5hit)

1-5hit
  • A Novel CS Model and Its Application in Complex SAR Image Compression

    Wentao LV  Gaohuan LV  Junfeng WANG  Wenxian YU  

     
    PAPER-Digital Signal Processing

      Vol:
    E96-A No:11
      Page(s):
    2209-2217

    In this paper, we consider the optimization of measurement matrix in Compressed Sensing (CS) framework. Based on the boundary constraint, we propose a novel algorithm to make the “mutual coherence” approach a lower bound. This algorithm is implemented by using an iterative strategy. In each iteration, a neighborhood interval of the maximal off-diagonal entry in the Gram matrix is scaled down with the same shrinkage factor, and then a lower mutual coherence between the measurement matrix and sparsifying matrix is obtained. After many iterations, the magnitudes of most of off-diagonal entries approach the lower bound. The proposed optimization algorithm demonstrates better performance compared with other typical optimization methods, such as t-averaged mutual coherence. In addition, the effectiveness of CS can be used for the compression of complex synthetic aperture radar (SAR) image is verified, and experimental results using simulated data and real field data corroborate this claim.

  • Ground Moving Target Indication for HRWS-SAR Systems via Symmetric Reconstruction

    Hongchao ZHENG  Junfeng WANG  Xingzhao LIU  Wentao LV  

     
    PAPER-Digital Signal Processing

      Vol:
    E99-A No:8
      Page(s):
    1576-1583

    In this paper, a new scheme is presented for ground moving target indication for multichannel high-resolution wide-swath (HRWS) SAR systems with modified reconstruction filters. The conventional steering vector is generalized for moving targets through taking into account the additional Doppler centroid shift caused by the across-track velocity. Two modified steering vectors with symmetric velocity information are utilized to produce two images for the same scene. Due to the unmatched steering vectors, the stationary backgrounds are defocused but they still hold the same intensities in both images but moving targets are blurred to different extents. The ambiguous components of the moving targets can also be suppressed due to the beamforming in the reconstruction procedure. Therefore, ground moving target indication can be carried out via intensity comparison between the two images. The effectiveness of the proposed method is verified by both simulated and real airborne SAR data.

  • Modeling and Analysis of Electromechanical Automatic Leveling Mechanism for High-Mobility Vehicle-Mounted Theodolites Open Access

    Xiangyu LI  Ping RUAN  Wei HAO  Meilin XIE  Tao LV  

     
    PAPER-Measurement Technology

      Pubricized:
    2023/09/26
      Vol:
    E107-A No:7
      Page(s):
    1027-1039

    To achieve precise measurement without landing, the high-mobility vehicle-mounted theodolite needs to be leveled quickly with high precision and ensure sufficient support stability before work. After the measurement, it is also necessary to ensure that the high-mobility vehicle-mounted theodolite can be quickly withdrawn. Therefore, this paper proposes a hierarchical automatic leveling strategy and establishes a two-stage electromechanical automatic leveling mechanism model. Using coarse leveling of the first-stage automatic leveling mechanism and fine leveling of the second-stage automatic leveling mechanism, the model realizes high-precision and fast leveling of the vehicle-mounted theodolites. Then, the leveling control method based on repeated positioning is proposed for the first-stage automatic leveling mechanism. To realize the rapid withdrawal for high-mobility vehicle-mounted theodolites, the method ensures the coincidence of spatial movement paths when the structural parts are unfolded and withdrawn. Next, the leg static balance equation is constructed in the leveling state, and the support force detection method is discussed in realizing the stable support for vehicle-mounted theodolites. Furthermore, a mathematical model for “false leg” detection is established furtherly, and a “false leg” detection scheme based on the support force detection method is analyzed to significantly improve the support stability of vehicle-mounted theodolites. Finally, an experimental platform is constructed to perform the performance test for automatic leveling mechanisms. The experimental results show that the leveling accuracy of established two-stage electromechanical automatic leveling mechanism can reach 3.6″, and the leveling time is no more than 2 mins. The maximum support force error of the support force detection method is less than 15%, and the average support force error is less than 10%. In contrast, the maximum support force error of the drive motor torque detection method reaches 80.12%, and its leg support stability is much less than the support force detection method. The model and analysis method proposed in this paper can also be used for vehicle-mounted radar, vehicle-mounted laser measurement devices, vehicle-mounted artillery launchers and other types of vehicle-mounted equipment with high-precision and high-mobility working requirements.

  • Compressed Sensing for Range-Resolved Signal of Ballistic Target with Low Computational Complexity

    Wentao LV  Jiliang LIU  Xiaomin BAO  Xiaocheng YANG  Long WU  

     
    LETTER-Digital Signal Processing

      Vol:
    E99-A No:6
      Page(s):
    1238-1242

    The classification of warheads and decoys is a core technology in the defense of the ballistic missile. Usually, a high range resolution is favorable for the development of the classification algorithm, which requires a high sampling rate in fast time, and thus leads to a heavy computation burden for data processing. In this paper, a novel method based on compressed sensing (CS) is presented to improve the range resolution of the target with low computational complexity. First, a tool for electromagnetic calculation, such as CST Microwave Studio, is used to simulate the frequency response of the electromagnetic scattering of the target. Second, the range-resolved signal of the target is acquired by further processing. Third, a greedy algorithm is applied to this signal. By the iterative search of the maximum value from the signal rather than the calculation of the inner product for raw echo, the scattering coefficients of the target can be reconstructed efficiently. A series of experimental results demonstrates the effectiveness of our method.

  • Improvement of Semi-Random Measurement Matrix for Compressed Sensing

    Wentao LV  Junfeng WANG  Wenxian YU  Zhen TAN  

     
    LETTER-Digital Signal Processing

      Vol:
    E97-A No:6
      Page(s):
    1426-1429

    In compressed sensing, the design of the measurement matrix is a key work. In order to achieve a more precise reconstruction result, the columns of the measurement matrix should have better orthogonality or linear incoherence. A random matrix, like a Gaussian random matrix (GRM), is commonly adopted as the measurement matrix currently. However, the columns of the random matrix are only statistically-orthogonal. By substituting an orthogonal basis into the random matrix to construct a semi-random measurement matrix and by optimizing the mutual coherence between dictionary columns to approach a theoretical lower bound, the linear incoherence of the measurement matrix can be greatly improved. With this optimization measurement matrix, the signal can be reconstructed from its measures more precisely.