The search functionality is under construction.

Author Search Result

[Author] Tao XIE(8hit)

1-8hit
  • Secure Directional Modulation Using the Symmetrical Multi-Carrier Frequency Diverse Array with Logarithmical Frequency Increment

    Tao XIE  Jiang ZHU  Qian CHENG  Junshan LUO  

     
    PAPER-Communication Theory and Signals

      Vol:
    E102-A No:4
      Page(s):
    633-640

    Wireless communication security has become a hot topic in recent years. The directional modulation (DM) is a promising secure communication technique that has attracted attentions of many researchers. Several different frequency diverse arrays (FDAs) are used to obtain the direction-range-dependent DM signals in previous literatures. However, most of them are not ideal enough to obtain a nonperiodic dot-shaped secure area. In this paper, the symmetrical multi-carrier frequency diverse array with logarithmical frequency increment, named the symmetrical-multilog-FDA, is used to obtain the direction-range-dependent DM signals that are normal at the desired locations while disordered at other locations. Based on the symmetrical-multilog-FDA, we derive the closed-form expression of baseband-weighted vector using the artificial-noise-aided zero-forcing approach. Compared with previous schemes, the proposed scheme can obtain a more fine-focusing nonperiodic dot-shaped secure area at the desired location. In addition, it can achieve a point-to-multipoint secure communication for multiple cooperative receivers at different locations.

  • An Analysis of How User Random Walks Influence Information Diffusion in Social Networking Websites

    Qian XIAO  Haitao XIE  

     
    PAPER-Graphs and Networks

      Vol:
    E98-A No:10
      Page(s):
    2129-2138

    In social websites, users acquire information from adjacent neighbors as well as distant users by seeking along hyperlinks, and therefore, information diffusions, also seen as processes of “user infection”, show both cascading and jumping routes in social networks. Currently, existing analysis suffers from the difficulty in distinguishing between the impacts of information seeking behaviors, i.e. random walks, and other factors leading to user infections. To this end, we present a mechanism to recognize and measure influences of random walks on information diffusions. Firstly, we propose the concept of information propagation structure (IPS), which is also a directed acyclic graph, to represent frequent information diffusion routes in social networks. In IPS, we represent “jumping routes” as virtual arcs and regard them as the traces of random walks. Secondly, we design a frequent IPS mining algorithm (FIPS). By considering descendant node infections as a consequence of ancestor node infections in IPS, we can use a Bayesian network to model each IPS, and learn parameters based on the records of information diffusions passing through the IPS. Finally, we present a quantitative description method of random walks influence, the method is based on Bayesian probabilistic inferring in IPS, which is used to determine the ancestors, whose infection causes the infection of target users. We also employ betweenness centralities of arcs to evaluate contributions of random walks to certain infections. Experiments are carried out with real datasets and simulations. The results show random walks are influential in early and steady phases of information diffusions. They help diffusions pass through some topology limitations in social networks.

  • A Social Collaborative Filtering Method to Alleviate Data Sparsity Based on Graph Convolutional Networks

    Haitao XIE  Qingtao FAN  Qian XIAO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/08/28
      Vol:
    E103-D No:12
      Page(s):
    2611-2619

    Nowadays recommender systems (RS) keep drawing attention from academia, and collaborative filtering (CF) is the most successful technique for building RS. To overcome the inherent limitation, which is referred to as data sparsity in CF, various solutions are proposed to incorporate additional social information into recommendation processes, such as trust networks. However, existing methods suffer from multi-source data integration (i.e., fusion of social information and ratings), which is the basis for similarity calculation of user preferences. To this end, we propose a social collaborative filtering method based on novel trust metrics. Firstly, we use Graph Convolutional Networks (GCNs) to learn the associations between social information and user ratings while considering the underlying social network structures. Secondly, we measure the direct-trust values between neighbors by representing multi-source data as user ratings on popular items, and then calculate the indirect-trust values based on trust propagations. Thirdly, we employ all trust values to create a social regularization in user-item rating matrix factorization in order to avoid overfittings. The experiments on real datasets show that our approach outperforms the other state-of-the-art methods on usage of multi-source data to alleviate data sparsity.

  • Low-Complexity Time-Invariant Angle-Range Dependent DM Based on Time-Modulated FDA Using Vector Synthesis Method

    Qian CHENG  Jiang ZHU  Tao XIE  Junshan LUO  Zuohong XU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/07/18
      Vol:
    E103-B No:1
      Page(s):
    79-90

    A low-complexity time-invariant angle-range dependent directional modulation (DM) based on time-modulated frequency diverse array (TM-FDA-DM) is proposed to achieve point-to-point physical layer security communications. The principle of TM-FDA is elaborated and the vector synthesis method is utilized to realize the proposal, TM-FDA-DM, where normalization and orthogonal matrices are designed to modulate the useful baseband symbols and inserted artificial noise, respectively. Since the two designed matrices are time-invariant fixed values, which avoid real-time calculation, the proposed TM-FDA-DM is much easier to implement than time-invariant DMs based on conventional linear FDA or logarithmical FDA, and it also outperforms the time-invariant angle-range dependent DM that utilizes genetic algorithm (GA) to optimize phase shifters on radio frequency (RF) frontend. Additionally, a robust synthesis method for TM-FDA-DM with imperfect angle and range estimations is proposed by optimizing normalization matrix. Simulations demonstrate that the proposed TM-FDA-DM exhibits time-invariant and angle-range dependent characteristics, and the proposed robust TM-FDA-DM can achieve better BER performance than the non-robust method when the maximum range error is larger than 7km and the maximum angle error is larger than 4°.

  • Secure Point-to-Multipoint Communication Using the Spread Spectrum Assisted Orthogonal Frequency Diverse Array in Free Space

    Tao XIE  Jiang ZHU  Qian CHENG  Yifu GUAN  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/12/17
      Vol:
    E102-B No:6
      Page(s):
    1188-1197

    Wireless communication security has been increasingly important nowadays. Directional modulation (DM) is seen as a promising wireless physical layer security technology. Traditional DM is a transmit-side technology that projects digitally modulated information signals in the desired directions (or at the desired locations) while simultaneously distorting the constellation formats of the same signals in other directions (or at all other locations). However, these directly exposed digitally modulated information signals are easily intercepted by eavesdroppers along the desired directions (or around the desired locations). A new DM scheme for secure point-to-multipoint communication based on the spread spectrum assisted orthogonal frequency diverse array (short for SS-OFDA-M-DM) is proposed in this paper. It can achieve point-to-multipoint secure communication for multiple cooperative receivers at different locations. In the proposed SS-OFDA-M-DM scheme, only cooperative users that use specific DM receivers with right spread spectrum parameters can retrieve right symbols. Eavesdroppers without knowledge of spread spectrum parameters cannot intercept useful signals directly at the desired locations. Moreover, they cannot receive normal symbols at other locations either even if the right spread spectrum parameters are known. Numerical simulation results verify the validity of our proposed scheme.

  • The Simplified REV Method Combined with Hadamard Group Division for Phased Array Calibration

    Tao XIE  Jiang ZHU  Jinjun LUO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/08/28
      Vol:
    E101-B No:3
      Page(s):
    847-855

    The rotating element electric field vector (REV) method is a classical measurement technique for phased array calibration. Compared with other calibration methods, it requires only power measurements. Thus, the REV method is more reliable for operating phased array calibration systems. However, since the phase of each element must be rotated from 0 to 2π, the conventional REV method requires a large number of measurements. Moreover, the power of composite electric field vector doesn't vary significantly because only a single element's phase is rotated. Thus, it can be easily degraded by the receiver noise. A simplified REV method combined with Hadamard group division is proposed in this paper. In the proposed method, only power measurements are required. All the array elements are divided into different groups according to the group matrix derived from the normalized Hadamard matrix. The phases of all the elements in the same group are rotated at the same time, and the composite electric field vector of this group is obtained by the simplified REV method. Hence, the relative electric fields of all elements can be obtained by a matrix equation. Compared with the conventional REV method, the proposed method can not only reduce the number of measurements but also improve the measurement accuracy under the particular range of signal to noise ratio(SNR) at the receiver, especially under low and moderate SNRs.

  • A Resonant Frequency Formula of Bow-Tie Microstrip Antenna and Its Application for the Design of the Antenna Using Genetic Algorithm

    Wen-Jun CHEN  Bin-Hong LI  Tao XIE  

     
    LETTER-Antennas and Propagation

      Vol:
    E87-B No:9
      Page(s):
    2808-2810

    An empirical formula of resonant frequency of bow-tie microstrip antennas is presented, which is based on the cavity model of microstrip patch antennas. A procedure to design a bow-tie antenna using genetic algorithm (GA) in which we take the formula as a fitness function is also given. An optimized bow-tie antenna by genetic algorithm was constructed and measured. Numerical and experimental results are used to validate the formula and GA. The results are in good agreement.

  • A Security Middleware Model for Real-Time Applications on Grids

    Tao XIE  Xiao QIN  

     
    PAPER-Grid Computing

      Vol:
    E89-D No:2
      Page(s):
    631-638

    Real-time applications are indispensable for conducting research and business in government, industry, and academic organizations. Recently, real-time applications with security requirements increasingly emerged in large-scale distributed systems such as Grids. However, the complexities and specialties of diverse security mechanisms dissuade users from employing existing security services for their applications. To effectively tackle this problem, in this paper we propose a security middleware (SMW) model from which security-sensitive real-time applications are enabled to exploit a variety of security services to enhance the trustworthy executions of the applications. A quality of security control manager (QSCM), a centerpiece of the SMW model, has been designed and implemented to achieve a flexible trade-off between overheads caused by security services and system performance, especially under situations where available resources are dynamically changing and insufficient. A security-aware scheduling mechanism, which plays an important role in QSCM, is capable of maximizing quality of security for real-time applications running in distributed systems as large-scale as Grids. Our empirical studies based on real world traces from a supercomputing center demonstratively show that the proposed model can significantly improve the performance of Grids in terms of both security and schedulability.