1-4hit |
Pisit BOONSRIMUANG Katsuhiro NAITO Kazuo MORI Tawil PAUNGMA Hideo KOBAYASHI
The main disadvantage of orthogonal frequency division multiplexing (OFDM) is the high time domain PAPR. The larger PAPR signal would fatally degrade BER performance in non-linear channels. This paper proposes an improved DSI method, which can achieve better PAPR and BER performances in the non-linear channel with less computation complexity than the conventional DSI method. The feature of proposed method is to employ the time-frequency domain swapping algorithm in the determination of frequency data for dummy sub-carriers. This paper presents various computer simulation results to verify the effectiveness of proposed DSI method.
Phichet MOUNGNOUL Manoon SUKKASEM Tawil PAUNGMA
By integrating three networks, namely, Public Switched Telephone Network (PSTN), Personal Handy-Phone System (PHS) and Intelligent Network (IN) to work together as a Personal Communication Telephone (PCT) service to be offered in the Bangkok metropolis area, the PCT service enables the advent of three new concepts, first, using the same telephone number as that of the fixed line to become a "Personal Number," second, a cell coverage designed to cover larger areas than that of the PHS (by changing hand-out threshold level from 33 dBµV to 30 dBµV and hand-in threshold level from 30 dBµV to 25 dBµV) in order to reduce the muting time during the handover process and provide higher mobility at up to 60 kilometers per hour, and third, a technique of "2 carriers per area" to reduce "call drop." All these techniques will be described in this paper.
Pisit BOONSRIMUANG Kazuo MORI Tawil PAUNGMA Hideo KOBAYASHI
One of the disadvantages of using OFDM is the larger peak to averaged power ratio (PAPR) of the time domain signal as compared with the conventional single carrier transmission method. The OFDM signal with larger PAPR will cause the undesirable spectrum re-growth and the larger degradation of bit error rate (BER) performance both due to the inter-modulation products occurring in the non-linear amplifier at the transmitter. The clipping method in conjunction with the Decision Aided Reconstruction (DAR) method is well known as one of the solutions to improve the BER performance with keeping the better PAPR performance. However, the DAR method is proposed to mitigate only the clipping noise and not for the inter-modulation noise. In this paper, we propose the Improved DAR (IDAR) method, which can mitigate both the clipping noise and inter-modulation noise on the basis of DAR method. The proposed method enables the efficient usage of transmission power amplifier at the transmitter with keeping the better PAPR and BER performances. This paper presents various computer simulation results to verify the performance of proposed IDAR method in the non-linear channel.
Pisit BOONSRIMUANG Kazuo MORI Tawil PAUNGMA Hideo KOBAYASHI
One of the disadvantages of using OFDM is the larger peak to averaged power ratio (PAPR) in its time domain signal as compared with the conventional single carrier modulation method. The larger PAPR signal would course the fatal degradation of bit error rate (BER) performance due to the inter-modulation noise occurring in the non-linear amplifier. To overcome this problem, this paper proposes a simple PAPR reduction method by using dummy sub-carriers, which can achieve the better PAPR performance with less computational complexity than the conventional method. This paper presents various computer simulation results to verify the effectiveness of proposed method as comparing with the conventional method in the non-linear channel.