The search functionality is under construction.

Author Search Result

[Author] Teemu TOSSAVAINEN(2hit)

1-2hit
  • Design of a Compact Sound Localization Device on a Stand-Alone FPGA-Based Platform

    Mauricio KUGLER  Teemu TOSSAVAINEN  Susumu KUROYANAGI  Akira IWATA  

     
    PAPER-Computer System

      Pubricized:
    2016/07/26
      Vol:
    E99-D No:11
      Page(s):
    2682-2693

    Sound localization systems are widely studied and have several potential applications, including hearing aid devices, surveillance and robotics. However, few proposed solutions target portable systems, such as wearable devices, which require a small unnoticeable platform, or unmanned aerial vehicles, in which weight and low power consumption are critical aspects. The main objective of this research is to achieve real-time sound localization capability in a small, self-contained device, without having to rely on large shaped platforms or complex microphone arrays. The proposed device has two surface-mount microphones spaced only 20 mm apart. Such reduced dimensions present challenges for the implementation, as differences in level and spectra become negligible, and only time-difference of arrival (TDoA) can be used as a localization cue. Three main issues have to be addressed in order to accomplish these objectives. To achieve real-time processing, the TDoA is calculated using zero-crossing spikes applied to the hardware-friendly Jeffers model. In order to make up for the reduction in resolution due to the small dimensions, the signal is upsampled several-fold within the system. Finally, a coherence-based spectral masking is used to select only frequency components with relevant TDoA information. The proposed system was implemented on a field-programmable gate array (FPGA) based platform, due to the large amount of concurrent and independent tasks, which can be efficiently parallelized in reconfigurable hardware devices. Experimental results with white-noise and environmental sounds show high accuracies for both anechoic and reverberant conditions.

  • Real-Time Hardware Implementation of a Sound Recognition System with In-Field Learning

    Mauricio KUGLER  Teemu TOSSAVAINEN  Miku NAKATSU  Susumu KUROYANAGI  Akira IWATA  

     
    PAPER-Speech and Hearing

      Pubricized:
    2016/03/30
      Vol:
    E99-D No:7
      Page(s):
    1885-1894

    The development of assistive devices for automated sound recognition is an important field of research and has been receiving increased attention. However, there are still very few methods specifically developed for identifying environmental sounds. The majority of the existing approaches try to adapt speech recognition techniques for the task, usually incurring high computational complexity. This paper proposes a sound recognition method dedicated to environmental sounds, designed with its main focus on embedded applications. The pre-processing stage is loosely based on the human hearing system, while a robust set of binary features permits a simple k-NN classifier to be used. This gives the system the capability of in-field learning, by which new sounds can be simply added to the reference set in real-time, greatly improving its usability. The system was implemented in an FPGA based platform, developed in-house specifically for this application. The design of the proposed method took into consideration several restrictions imposed by the hardware, such as limited computing power and memory, and supports up to 12 reference sounds of around 5.3 s each. Experimental results were performed in a database of 29 sounds. Sensitivity and specificity were evaluated over several random subsets of these signals. The obtained values for sensitivity and specificity, without additional noise, were, respectively, 0.957 and 0.918. With the addition of +6 dB of pink noise, sensitivity and specificity were 0.822 and 0.942, respectively. The in-field learning strategy presented no significant change in sensitivity and a total decrease of 5.4% in specificity when progressively increasing the number of reference sounds from 1 to 9 under noisy conditions. The minimal signal-to-noise ration required by the prototype to correctly recognize sounds was between -8 dB and 3 dB. These results show that the proposed method and implementation have great potential for several real life applications.