1-1hit |
Teng LIANG Ao ZHAN Chengyu WU Zhengqiang WANG
In this letter, a path dynamics assessment asynchronous advantage actor-critic scheduling algorithm (PDAA3C) is proposed to solve the MPTCP scheduling problem by using deep reinforcement learning Actor-Critic framework. The algorithm picks out the optimal transmitting path faster by multi-core asynchronous updating and also guarantee the network fairness. Compared with the existing algorithms, the proposed algorithm achieves 8.6% throughput gain over RLDS algorithm, and approaches the theoretic upper bound in the NS3 simulation.