1-3hit |
Norio OHKAWA Tetsuo TAKAHASHI Yoshiaki MIYAJIMA Mamoru AIKI
Repeaterless transmission system design employing remote pumping in a single fiber is clarified. The design is aimed to realize cost effective submarine transmission systems with easy maintenance. Remote pumping in a single fiber can extend repeaterless transmission distance without decreasing the system capacity per cable. It is applicable for high-count-fiber cable such as the 100-fiber submarine cable already developed. A simple but effective system configuration is presented that uses remote pumping from receiver end; both remote-pre erbium-doped fiber (EDF) amplification and backward pumping Raman amplification are employed. Stable transmission can be obtained without optical isolators, therefore the optical time domain reflectometry (OTDR) method is supported by this system. Three fiber configurations, which consist of dispersion shifted fiber (DSF), pure silica core fiber (PSCF) and a combination of DSF and PSCF, are examined to compare system performance. Remote-pre EDF is optimized in terms of length and location from receiver end by optical SNR (OSNR) calculations. Maximum signal output power is also determined through a waveform simulation based on the split-step Fourier method, in order to avoid waveform distortion caused by the combined effect of self-phase modulation (SPM) and group velocity dispersion (GVD). Through these calculations and simulations, we confirm the proposed repeaterless transmission system performance of 600Mbit/s-451 km with PSCF, 2. 5 Gbit/s-407 km with DSF + PSCF, and 10 Gbit/s-376 km with DSF+PSCF, which include system margin.
Hidehiko TAKARA Tetsuo TAKAHASHI Kazuhide NAKAJIMA Yutaka MIYAMOTO
The paper presents ultra-high-capacity transmission technologies based on multi-core space-division-multiplexing. In order to realize high-capacity multi-core fiber (MCF) transmission, investigation of low crosstalk fiber and connection technology is important, and high-density signal generation using multilevel modulation and crosstalk management are also key technologies. 1Pb/s multi-core fiber transmission experiment using space-division-multiplexing is also described.
Kota SHIKAMA Yoshiteru ABE Shuichiro ASAKAWA Shuichi YANAGI Tetsuo TAKAHASHI
We describe a physical-contact (PC) multicore fiber (MCF) connector with good optical characteristics. To achieve stable physical-contact connection, we clarify the relationship between connector-end deformation and compression force with spherical polished ferrule end structures using finite element analysis and actual measurements. On the basis of the obtained relationship, we demonstrate a design approach that shows the physical-contact condition of all the cores of a multicore fiber with a simplex connector. In addition, we clarify the design criteria for low-loss connection by employing a rotational angle alignment structure, and devise an SC-type rotational MCF connector with high alignment accuracy. Based on our designs for PC and low-loss connection, we demonstrate an MCF connector with PC connection that provides a sufficiently high return loss exceeding 50dB and a sufficiently low connection loss of below 0.2dB for all the cores of a 7-core single-mode MCF.