The search functionality is under construction.

Author Search Result

[Author] Tianshuang QIU(2hit)

1-2hit
  • TDOA Estimation Algorithm Based on Generalized Cyclic Correntropy in Impulsive Noise and Cochannel Interference

    Xing CHEN  Tianshuang QIU  Cheng LIU  Jitong MA  

     
    PAPER-Digital Signal Processing

      Vol:
    E101-A No:10
      Page(s):
    1625-1630

    This paper mainly discusses the time-difference-of-arrival (TDOA) estimation problem of digital modulation signal under impulsive noise and cochannel interference environment. Since the conventional TDOA estimation algorithms based on the second-order cyclic statistics degenerate severely in impulsive noise and the TDOA estimation algorithms based on correntropy are out of work in cochannel interference, a novel signal-selective algorithm based on the generalized cyclic correntropy is proposed, which can suppress both impulsive noise and cochannel interference. Theoretical derivation and simulation results demonstrate the effectiveness and robustness of the proposed algorithm.

  • Robust Fractional Lower Order Correntropy Algorithm for DOA Estimation in Impulsive Noise Environments

    Quan TIAN  Tianshuang QIU  Jitong MA  Jingchun LI  Rong LI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/06/29
      Vol:
    E104-B No:1
      Page(s):
    35-48

    In array signal processing, many methods of handling cases of impulsive noise with an alpha-stable distribution have been studied. By introducing correntropy with a robust statistical property, this paper proposes a novel fractional lower order correntropy (FLOCR) method. The FLOCR-based estimator for array outputs is defined and applied with multiple signal classification (MUSIC) to estimate the direction of arrival (DOA) in alpha-stable distributed noise environments. Comprehensive Monte Carlo simulation results demonstrate that FLOCR-MUSIC outperforms existing algorithms in terms of root mean square error (RMSE) and the probability of resolution, especially in the presence of highly impulsive noise.