The search functionality is under construction.

Author Search Result

[Author] Tien-Ying KUO(2hit)

1-2hit
  • Variable Frame Skipping Scheme Based on Estimated Quality of Non-coded Frames at Decoder for Real-Time Video Coding

    Tien-Ying KUO  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E88-D No:12
      Page(s):
    2849-2856

    This paper proposes a block-based video encoder employing variable frame skipping (VFS) to improve the video quality in low bit rate channel. The basic idea of VFS mechanism is to decide and skip a suitable, non-fixed number of frames in temporal domain to reduce bit usage. The saved bits can be allocated to enhance the spatial quality of video. In literature, several methods of frame skipping decision have been proposed, but most of them only consider the similarities between neighboring coded frames as the decision criteria. Our proposed method takes into account the reconstruction of the skipped frames using motion-compensated frame interpolation at decoder. The proposed VFS models the reconstructed objective quality of the skipped frame and, therefore, can provide a fast estimate to the frame skipping at encoder. The proposed VFS can determine the suitable frame skipping in real time and provide the encoded video with better spatial-temporal bit allocation.

  • Temporal Error Concealment Based on Weighted Pixel Estimator

    Tien-Ying KUO  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E89-D No:9
      Page(s):
    2583-2586

    A temporal error concealment algorithm for the block-based video coder has been proposed. The concept of block overlapping is adopted to conceal the erroneous blocks, and the recovered pixels are estimated by the weighted sum from the overlapping. The overlapping weighting matrix has been carefully selected in order to fully exploit the spatial-temporal correlation between boundary blocks and the lost block. Furthermore, the motion vector for the lost block has been recovered by considering the best results for the overlapping. The experimental results are shown by integrating our algorithm into the H.263+ coder.