1-2hit |
Tinghuai MA Limin GUO Meili TANG Yuan TIAN Mznah AL-RODHAAN Abdullah AL-DHELAAN
User-based and item-based collaborative filtering (CF) are two of the most important and popular techniques in recommender systems. Although they are widely used, there are still some limitations, such as not being well adapted to the sparsity of data sets, failure to consider the hierarchical structure of the items, and changes in users' interests when calculating the similarity of items. To overcome these shortcomings, we propose an evolutionary approach based on hierarchical structure for dynamic recommendation system named Hierarchical Temporal Collaborative Filtering (HTCF). The main contribution of the paper is displayed in the following two aspects. One is the exploration of hierarchical structure between items to improve similarity, and the other is the improvement of the prediction accuracy by utilizing a time weight function. A unique feature of our method is that it selects neighbors mainly based on hierarchical structure between items, which is more reliable than co-rated items utilized in traditional CF. To the best of our knowledge, there is little previous work on researching CF algorithm by combining object implicit or latent object-structure relations. The experimental results show that our method outperforms several current recommendation algorithms on recommendation accuracy (in terms of MAE).
Tinghuai MA Jinjuan ZHOU Meili TANG Yuan TIAN Abdullah AL-DHELAAN Mznah AL-RODHAAN Sungyoung LEE
Recommender systems, which provide users with recommendations of content suited to their needs, have received great attention in today's online business world. However, most recommendation approaches exploit only a single source of input data and suffer from the data sparsity problem and the cold start problem. To improve recommendation accuracy in this situation, additional sources of information, such as friend relationship and user-generated tags, should be incorporated in recommendation systems. In this paper, we revise the user-based collaborative filtering (CF) technique, and propose two recommendation approaches fusing user-generated tags and social relations in a novel way. In order to evaluate the performance of our approaches, we compare experimental results with two baseline methods: user-based CF and user-based CF with weighted friendship similarity using the real datasets (Last.fm and Movielens). Our experimental results show that our methods get higher accuracy. We also verify our methods in cold-start settings, and our methods achieve more precise recommendations than the compared approaches.