The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Tingxuan LI(1hit)

1-1hit
  • Multi-Task Learning of Japanese How-to Tip Machine Reading Comprehension by a Generative Model

    Xiaotian WANG  Tingxuan LI  Takuya TAMURA  Shunsuke NISHIDA  Takehito UTSURO  

     
    PAPER-Natural Language Processing

      Pubricized:
    2023/10/23
      Vol:
    E107-D No:1
      Page(s):
    125-134

    In the research of machine reading comprehension of Japanese how-to tip QA tasks, conventional extractive machine reading comprehension methods have difficulty in dealing with cases in which the answer string spans multiple locations in the context. The method of fine-tuning of the BERT model for machine reading comprehension tasks is not suitable for such cases. In this paper, we trained a generative machine reading comprehension model of Japanese how-to tip by constructing a generative dataset based on the website “wikihow” as a source of information. We then proposed two methods for multi-task learning to fine-tune the generative model. The first method is the multi-task learning with a generative and extractive hybrid training dataset, where both generative and extractive datasets are simultaneously trained on a single model. The second method is the multi-task learning with the inter-sentence semantic similarity and answer generation, where, drawing upon the answer generation task, the model additionally learns the distance between the sentences of the question/context and the answer in the training examples. The evaluation results showed that both of the multi-task learning methods significantly outperformed the single-task learning method in generative question-and-answer examples. Between the two methods for multi-task learning, that with the inter-sentence semantic similarity and answer generation performed the best in terms of the manual evaluation result. The data and the code are available at https://github.com/EternalEdenn/multitask_ext-gen_sts-gen.