The search functionality is under construction.

Author Search Result

[Author] Tomohiro YOSHIHARA(2hit)

1-2hit
  • Concurrency Control Protocol for Parallel B-Tree Structures That Improves the Efficiency of Request Transfers and SMOs within a Node

    Tomohiro YOSHIHARA  Dai KOBAYASHI  Haruo YOKOTA  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2017/10/18
      Vol:
    E101-D No:1
      Page(s):
    152-170

    Many concurrency control protocols for B-trees use latch-coupling because its execution is efficient on a single machine. Some studies have indicated that latch-coupling may involve a performance bottleneck when using multicore processors in a shared-everything environment, but no studies have considered the possible performance bottleneck caused by sending messages between processing elements (PEs) in shared-nothing environments. We propose two new concurrency control protocols, “LCFB” and “LCFB-link”, which require no latch-coupling in optimistic processes. The LCFB-link also innovates B-link approach within each PE to reduce the cost of modifications in the PE, as a solution to the difficulty of consistency management for the side pointers in a parallel B-tree. The B-link algorithm is well known as a protocol without latch-coupling, but B-link has the difficulty of guaranteeing the consistency of the side pointers in a parallel B-tree. Experimental results in various environments indicated that the system throughput of the proposed protocols was always superior to those of the conventional protocols, particularly in large-scale configurations, and using LCFB-link was effective for higher update ratios. In addition, to mitigate access skew, data should migrate between PEs. We have demonstrated that our protocols always improve the system throughput and are effective as concurrency controls for data migration.

  • MARK-OPT: A Concurrency Control Protocol for Parallel B-Tree Structures to Reduce the Cost of SMOs

    Tomohiro YOSHIHARA  Dai KOBAYASHI  Haruo YOKOTA  

     
    PAPER-Database

      Vol:
    E90-D No:8
      Page(s):
    1213-1224

    In this paper, we propose a new concurrency control protocol for parallel B-tree structures capable reducing the cost of structure-modification-operation (SMO) compared to the conventional protocols such as ARIES/IM and INC-OPT. We call this protocol the MARK-OPT protocol, since it marks the lowest SMO occurrence point during optimistic latch-coupling operations. The marking reduces middle phases for spreading an X latch and removes needless X latches. In addition, we propose three variations of the MARK-OPT, which focus on tree structure changes from other transactions. Moreover, the proposed protocols are deadlock-free and satisfy the physical consistency requirement for B-trees. These indicate that the proposed protocols are suitable as concurrency control protocols for B-tree structures. To compare the performance of the proposed protocols, the INC-OPT, and the ARIES/IM, we implement these protocols on an autonomous disk system adopting the Fat-Btree structure, a form of parallel B-tree structure. Experimental results in various environments indicate that the proposed protocols always improve system throughput, and 2P-REP-MARK-OPT is the most useful protocol in high update environment. Additionally, to mitigate access skew, data should be migrated between PEs. We also demonstrate that MARK-OPT improves the system throughput under the data migration and reduces the time for data migration to balance load distribution.